Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurementThis paper was presented at the Theory CANADA 4 conference, held at Centre de recherches mathématiques, Montréal, Québec, Canada on 4–7 June 2008.

In this paper we derive an effective master equation and quantum trajectory equation for multiple qubits in a single resonator and in the large resonator decay limit. We show that homodyne measurement of the resonator transmission is a weak measurement of the collective qubit inversion. As an example of this result, we focus on the case of two qubits and show how this measurement can be used to generate an entangled state from an initially separable state. This is realized without relying on an entangling Hamiltonian. We show that, for current experimental values of both the decoherence and measurement rates, this approach can be used to generate highly entangled states. This scheme takes advantage of the fact that one of the Bell states is decoherence-free under Purcell decay.

[1]  Mohan Sarovar,et al.  High-fidelity measurement and quantum feedback control in circuit QED (10 pages) , 2005, quant-ph/0508232.

[2]  R. J. Schoelkopf,et al.  Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.

[3]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[4]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[5]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[6]  Alexandre Blais,et al.  Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect , 2007, 0709.4264.

[7]  Milburn,et al.  Quantum theory of field-quadrature measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[8]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[9]  C. Monroe,et al.  Quantum interference of photon pairs from two remote trapped atomic ions , 2006, quant-ph/0608047.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[12]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[13]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[14]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[15]  J. Delft,et al.  The spin-boson model with a structured environment: a comparison of approaches , 2003, cond-mat/0310239.

[16]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[17]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[18]  Asymptotic von Neumann measurement strategy for solid-state qubits , 2003, cond-mat/0307679.

[19]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[20]  Daniel Kleppner,et al.  Cavity quantum electrodynamics , 1986 .

[21]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[22]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[23]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[24]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[25]  Jean-Michel Raimond,et al.  Exploring the Quantum: Atoms, Cavities, and Photons , 2006 .

[26]  Jens Koch,et al.  Suppressing Charge Noise Decoherence in Superconducting Charge Qubits , 2007, 0712.3581.

[27]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[28]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[29]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[30]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[31]  Alexandre Blais,et al.  Dispersive regime of circuit QED : Photon-dependent qubit dephasing and relaxation rates , 2008, 0810.1336.

[32]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[33]  A N Cleland,et al.  Measurement of the decay of Fock states in a superconducting quantum circuit. , 2008, Physical review letters.

[34]  J. Johansson,et al.  Vacuum Rabi oscillations in a macroscopic superconducting qubit oscillator system. , 2005, Physical review letters.

[35]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[36]  R. J. Schoelkopf,et al.  Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement , 2007 .

[37]  Milburn,et al.  Squeezing via feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[38]  Yu. A. Pashkin,et al.  Single artificial-atom lasing , 2007, Nature.

[39]  Alexandre Blais,et al.  Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting , 2006 .

[40]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.