B-spline modeling of VTEC over Turkey using GPS observations

In this study we propose two approaches to model the Vertical Total Electron Content (VTEC) of the ionosphere with quadratic B-spline functions. For the 2-D case, VTEC is modeled in a Sun-fixed reference frame. In the 3-D approach, the 2-D model is extended to represent the temporal variations in an Earth-fixed reference frame. The localizing features of B-splines allow resolving finer structures for the regions with a sufficient number of observations by increasing the level of functions. To reduce the effects of outliers, Iteratively Re-weighted Least Squares (IRLS) with a bi-square weighting function as a robust regression algorithm is applied for parameter estimation. Another iterative method LSQR is performed for the solution of the linear systems providing a regularization effect for ill-conditioned problems. B-spline approaches are applied to real data obtained from the ground-based GPS observations over Turkey. Results are compared with the solutions of the Bernese GPS Software.

[1]  Leos Mervart,et al.  Global and regional ionosphere models using the GPS double difference phase observable , 1996 .

[2]  Jaume Sanz,et al.  New approaches in global ionospheric determination using ground GPS data , 1999 .

[3]  Metin Nohutcu,et al.  Local modeling of VTEC using GPS observations , 2008 .

[4]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[5]  David J. Cummins,et al.  Iteratively reweighted partial least squares: A performance analysis by monte carlo simulation , 1995 .

[6]  Pawel Wielgosz,et al.  Regional Ionosphere Mapping with Kriging and Multiquadric Methods , 2003 .

[7]  R. Roberts,et al.  Calculating resolution and covariance matrices for seismic tomography with the LSQR method , 1999 .

[8]  Sandro M. Radicella,et al.  Calibration errors on experimental slant total electron content (TEC) determined with GPS , 2007 .

[9]  J. Kusche,et al.  Regularization of geopotential determination from satellite data by variance components , 2002 .

[10]  Michael Schmidt Regional multi-dimensional modeling of the ionosphere from satellite data , 2007 .

[11]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[12]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[13]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[14]  S. Schaer Mapping and predicting the Earth's ionosphere using the Global Positioning System. , 1999 .

[15]  Torsten Mayer-Gürr,et al.  Regional gravity modeling in terms of spherical base functions , 2006 .

[16]  C. K. Shum,et al.  Regional 4-D modeling of the ionospheric electron density from satellite data and IRI , 2009 .

[17]  Yang Gao,et al.  Ionospheric TEC predictions over a local area GPS reference network , 2004 .

[18]  Mioara Mandea,et al.  Wavelet frames: an alternative to spherical harmonic representation of potential fields , 2004 .

[19]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[20]  William Dumouchel,et al.  Integrating a robust option into a multiple regression computing environment , 1992 .

[21]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[22]  Tom Lyche,et al.  A Multiresolution Tensor Spline Method for Fitting Functions on the Sphere , 2000, SIAM J. Sci. Comput..

[23]  C. K. Shum,et al.  Regional 4-D modeling of the ionospheric electron density , 2008 .

[24]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[25]  Burkhard Schaffrin,et al.  Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets , 2005 .

[26]  Claudio Brunini,et al.  A New Ionosphere Monitoring Technology Based on GPS , 2004 .

[27]  David Salesin,et al.  Wavelets for computer graphics: a primer.1 , 1995, IEEE Computer Graphics and Applications.

[28]  Michael Schmidt,et al.  Wavelet modelling in support of IRI , 2005 .