International timescales with optical clocks (ITOC)
暂无分享,去创建一个
D. Piester | D. Calonico | J. Achkar | S. Vogt | S. Bize | P. Delva | F. Levi | P. B. Whibberley | S. Weyers | P. Gill | L. Lorini | M. Pizzocaro | U. Sterr | R. M. Godun | H. S. Margolis | S. Falke | C. Voigt | S. Bize | P. Whibberley | S. Shemar | L. Lorini | M. Pizzocaro | M. Merimaa | P. Gill | U. Sterr | L. Timmen | D. Calonico | F. Levi | H. Margolis | Dirk Piester | J. Achkar | S. Weyers | C. Lisdat | S. Falke | P. Delva | H. Denker | R. Godun | C. Voigt | C. Lisdat | M. Merimaa | T. Lindvall | L. A. M. Johnson | S. L. Shemar | H. Denker | L. Timmen | J. Gersl | T. Lindvall | J. Geršl | S. Vogt
[1] Scott A. Diddams,et al. Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level , 2004, Science.
[2] H. Schnatz,et al. The 87Sr optical frequency standard at PTB , 2011, 1104.4850.
[3] T. Hänsch,et al. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place , 2012, Science.
[4] Patrick Gill,et al. When should we change the definition of the second? , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] H. Inaba,et al. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. , 2008, Optics letters.
[6] D. Piester,et al. Remote atomic clock synchronization via satellites and optical fibers , 2011 .
[7] Davide Calonico,et al. IEN-CsF1 primary frequency standard at INRIM: accuracy evaluation and TAI calibrations , 2006 .
[8] D. Wineland,et al. Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.
[9] Ruoxin Li,et al. Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts , 2011, 1107.2412.
[10] Jun Ye,et al. The absolute frequency of the 87Sr optical clock transition , 2008, 0804.4509.
[11] J. Guéna,et al. Progress in atomic fountains at LNE-SYRTE , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[12] P. Rosenbusch,et al. Experimental realization of an optical second with strontium lattice clocks , 2013, Nature Communications.
[13] Jun Ye,et al. Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.
[14] Jon H. Shirley,et al. NIST-F1: recent improvements and accuracy evaluations , 2005 .
[15] K. Gibble,et al. Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2 , 2011, 1110.2590.
[16] Thomas E Parker,et al. Invited review article: The uncertainty in the realization and dissemination of the SI second from a systems point of view. , 2012, The Review of scientific instruments.
[17] Christian Chardonnet,et al. High-resolution optical frequency dissemination on a telecommunications network with data traffic. , 2009, Optics letters.
[18] P. Gill,et al. Absolute frequency measurement of the 2S1/2–2F7/2 electric octupole transition in a single ion of 171Yb+ with 10−15 fractional uncertainty , 2012 .
[19] M. Okhapkin,et al. High-accuracy optical clock based on the octupole transition in 171Yb+. , 2011, Physical review letters.
[20] Zichao Zhou,et al. 88Sr+ 445-THz single-ion reference at the 10(-17) level via control and cancellation of systematic uncertainties and its measurement against the SI second. , 2012, Physical review letters.
[21] Paul A. Williams,et al. High-stability transfer of an optical frequency over long fiber-optic links , 2008 .