Preparation of CuO nanoparticles by microwave irradiation

Abstract CuO nanoparticles with an average size of ca. 4 nm have been successfully prepared by microwave irradiation, using copper (II) acetate and sodium hydroxide as the starting materials and ethanol as the solvent. The CuO nanoparticles are characterized by using techniques such as X-ray powder diffraction, transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy and UV–Visible absorption spectroscopy. The as-prepared CuO nanoparticles have regular shape, narrow size distribution and high purity. The band gap is estimated to be 2.43 eV according to the results of the optical measurements of the CuO nanoparticles.

[1]  A. Kasuya,et al.  Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles , 2000 .

[2]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[3]  B. A. Calhoun,et al.  Ferromagnetic materials , 1955 .

[4]  Chandan Kumar Sarkar,et al.  Copper oxide thin films grown by plasma evaporation method , 1992 .

[5]  F. Meldrum,et al.  EPITAXIAL GROWTH OF SIZE-QUANTIZED CADMIUM SULFIDE CRYSTALS UNDER ARACHIDIC ACID MONOLAYERS , 1995 .

[6]  K. Wasa,et al.  Piezoelectric thin films of zinc oxide for saw devices , 1982 .

[7]  H. Tada,et al.  Mechanism of Formation of Nanocrystalline ZnO Particles through the Reaction of [Zn(acac)2] with NaOH in EtOH , 1998 .

[8]  Xavier Domènech,et al.  Preparation of anatase powders from fluorine-complexed titanium(iv) aqueous solution using microwave irradiation , 2000 .

[9]  W. Dow,et al.  Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst: II. Effect of Oxygen Vacancy of Support on Catalytic Activity for CO Oxidation , 1996 .

[10]  T. Shripathi,et al.  Quantum size effects in CuO nanoparticles , 2000 .

[11]  Wei Ji,et al.  PREPARATION AND CHARACTERIZATION OF CUO NANOCRYSTALS , 1999 .

[12]  A. Vertegel,et al.  Complexes of Cu(II) with polyvinyl alcohol as precursors for the preparation of CuO/SiO2 nanocomposites , 2000 .

[13]  S. Ito,et al.  New route to prepare ultrafine ZnO particles and its reaction mechanism , 1997 .

[14]  Christopher C. Landry,et al.  Rapid Calcination of Nanostructured Silicate Composites by Microwave Irradiation , 2001 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  A. Gedanken,et al.  Preparation of Cu2−xTe and HgTe by Using Microwave Heating , 2000 .

[17]  Angel Diéguez,et al.  Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders , 2000 .

[18]  John C. Mallinson,et al.  The foundations of magnetic recording , 1987 .

[19]  Edward A. Kenik,et al.  Rapid Synthesis of a Pt1Ru1/Carbon Nanocomposite Using Microwave Irradiation: A DMFC Anode Catalyst of High Relative Performance , 2001 .

[20]  J. Moser,et al.  Photoelectrochemical Studies on Nanocrystalline Hematite Films , 1994 .

[21]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[22]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[23]  B. Vaidhyanathan,et al.  Synthesis of inorganic solids using microwaves , 1999 .

[24]  M. J. Powers Ion Beam Technology , 1998 .

[25]  Keiske Kaji,et al.  X-Ray Diffraction Procedures , 1975 .

[26]  K. Klabunde,et al.  Catalytic Solid State Reactions on the Surface of Nanoscale Metal Oxide Particles , 1998 .

[27]  Weixia Tu,et al.  Rapid synthesis of nanoscale colloidal metalclusters by microwave irradiation , 2000 .

[28]  L. Wallenberg,et al.  Combustion of CO and toluene ; Characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide , 1996 .

[29]  A. Rakhshani,et al.  Preparation, characteristics and photovoltaic properties of cuprous oxide—a review , 1986 .

[30]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[31]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .