Information Acquisition in Data Fusion Systems

By purposefully utilising sensors, for instance by a datafusion system, the state of some system-relevant environmentmight be adequately assessed to support decision-making. Theever increasing access to sensors o.ers great opportunities,but alsoincurs grave challenges. As a result of managingmultiple sensors one can, e.g., expect to achieve a morecomprehensive, resolved, certain and more frequently updatedassessment of the environment than would be possible otherwise.Challenges include data association, treatment of con.ictinginformation and strategies for sensor coordination.We use the term information acquisition to denote the skillof a data fusion system to actively acquire information. Theaim of this thesis is to instructively situate that skill in ageneral context, explore and classify related research, andhighlight key issues and possible future work. It is our hopethat this thesis will facilitate communication, understandingand future e.orts for information acquisition.The previously mentioned trend towards utilisation of largesets of sensors makes us especially interested in large-scaleinformation acquisition, i.e., acquisition using many andpossibly spatially distributed and heterogeneous sensors.Information acquisition is a general concept that emerges inmany di.erent .elds of research. In this thesis, we surveyliterature from, e.g., agent theory, robotics and sensormanagement. We, furthermore, suggest a taxonomy of theliterature that highlights relevant aspects of informationacquisition.We describe a function, perception management (akin tosensor management), which realizes information acquisition inthe data fusion process and pertinent properties of itsexternal stimuli, sensing resources, and systemenvironment.An example of perception management is also presented. Thetask is that of managing a set of mobile sensors that jointlytrack some mobile targets. The game theoretic algorithmsuggested for distributing the targets among the sensors proveto be more robust to sensor failure than a measurement accuracyoptimal reference algorithm.Keywords:information acquisition, sensor management,resource management, information fusion, data fusion,perception management, game theory, target tracking

[1]  Gee Wah Ng,et al.  Sensor management - what, why and how , 2000, Inf. Fusion.

[2]  Julie A. Adams,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 2001, AI Mag..

[3]  Stefan Arnborg,et al.  Information awareness in command and control: precision, quality, utility , 2000, Proceedings of the Third International Conference on Information Fusion.

[4]  Keith D. Kastella,et al.  Information-based sensor management and IMMKF , 1998, Defense, Security, and Sensing.

[5]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[6]  Stevan Harnad,et al.  Symbol grounding problem , 1990, Scholarpedia.

[7]  A. Doucet,et al.  Particle filtering for multi-target tracking and sensor management , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[8]  Geir Hovland,et al.  Dynamic sensor selection for robotic systems , 1997, Proceedings of International Conference on Robotics and Automation.

[9]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[10]  Vincent Nimier,et al.  Distributed resource allocation under communication constraints , 2001, SPIE Defense + Commercial Sensing.

[11]  Sonya A. H. McMullen,et al.  Mathematical Techniques in Multisensor Data Fusion (Artech House Information Warfare Library) , 2004 .

[12]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[13]  Bruno Siciliano,et al.  Control Problems in Robotics and Automation , 1998 .

[14]  Bob Miller,et al.  Towards a Framework for Managing the Information Environment , 2001, Inf. Knowl. Syst. Manag..

[15]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[16]  Alfred O. Hero,et al.  Multi-target Sensor Management Using Alpha-Divergence Measures , 2003, IPSN.

[17]  Henrik I. Christensen,et al.  A game theoretic model for management of mobile sensors , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[18]  Wendi B. Heinzelman,et al.  Optimal sensor management under energy and reliability constraints , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[19]  Kenneth J. Hintz,et al.  Goal lattices for sensor management , 1999, Defense, Security, and Sensing.

[20]  S. Musick,et al.  Chasing the elusive sensor manager , 1994, Proceedings of National Aerospace and Electronics Conference (NAECON'94).

[21]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[22]  S. Paradis,et al.  Integration of all data fusion levels using a blackboard architecture , 1998 .

[23]  Sumantra Dutta Roy Active object recognition through next view planning , 2000 .

[24]  Wendi Heinzelman,et al.  Sensor management , 2004 .

[25]  Edmund H. Durfee,et al.  Rational Coordination in Multi-Agent Environments , 2000, Autonomous Agents and Multi-Agent Systems.

[26]  Maria L. Gini,et al.  Logical sensor/actuator: knowledge-based robotic plan execution , 1997, J. Exp. Theor. Artif. Intell..

[27]  Mark Williams,et al.  Sequential approach to multisensor resource management using particle filters , 2000, SPIE Defense + Commercial Sensing.

[28]  Stephen W. Soliday A Genetic Algorithm Model for Mission Planning and Dynamic Resource Allocation of Airborne Sensors , 1999 .

[29]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[30]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[31]  Simon Parsons,et al.  Principles of Data Mining by David J. Hand, Heikki Mannila and Padhraic Smyth, MIT Press, 546 pp., £34.50, ISBN 0-262-08290-X , 2004, The Knowledge Engineering Review.

[32]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[33]  Gregory D. Hager Task-Directed Sensor Fusion and Planning: A Computational Approach , 1990 .

[34]  Ning Xiong,et al.  Perception management: an emerging concept for information fusion , 2003, Inf. Fusion.

[35]  P. G. Gonsalves,et al.  Intelligent Fusion and Asset Management Processor , 1998, 1998 IEEE Information Technology Conference, Information Environment for the Future (Cat. No.98EX228).

[36]  D. Castañón Approximate dynamic programming for sensor management , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[37]  Bruce A. Chalmers,et al.  Toward a generic model for situation and threat assessment , 1997, Defense, Security, and Sensing.

[38]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[39]  Ronald P. S. Mahler,et al.  Multisensor-multitarget sensor management: a unified Bayesian approach , 2003, SPIE Defense + Commercial Sensing.

[40]  Lucas Paletta,et al.  A Comparison of Probabilistic, Possibilistic and Evidence Theoretic Fusion Schemes for Active Object Recognition , 1999, Computing.

[41]  Stuart J. Russell,et al.  Do the right thing - studies in limited rationality , 1991 .

[42]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[43]  C. J. Harris Application of Artificial Intelligence to Command and Control Systems , 1988 .

[44]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[45]  Victor R. Lesser,et al.  Distributed sensor network for real time tracking , 2001, AGENTS '01.

[46]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[47]  R. Reynaud,et al.  Request management using contextual information for classification , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[48]  Andrew B. Kahng,et al.  Cooperative Mobile Robotics: Antecedents and Directions , 1997, Auton. Robots.

[49]  M. Bacharach Two-person Cooperative Games , 1976 .

[50]  Hugh Durrant-Whyte,et al.  Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach , 1995 .

[51]  S. Sitharama Iyengar,et al.  Minimal sensor integrity in sensor grids , 2002, Proceedings International Conference on Parallel Processing.

[52]  Edmund H. Durfee,et al.  A Survey of Research in Distributed, Continual Planning , 1999, AI Mag..

[53]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[54]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[55]  Michael Wooldridge,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 1999 .

[56]  Ronald A. Howard,et al.  Information Value Theory , 1966, IEEE Trans. Syst. Sci. Cybern..

[57]  Van Creveld,et al.  COMMAND IN WAR , 1985, Air Officer Commanding.

[58]  Lucy Y. Pao,et al.  Controlling target estimate covariance in centralized multisensor systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[59]  Ning Xi,et al.  Control in Robotics and Automation: Sensor-Based Integration , 1999 .

[60]  Russell C. Brinker,et al.  The Surveying Handbook , 1987 .

[61]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[62]  Jeffrey S. Rosenschein,et al.  Mechanism Design for Automated Negotiation, and its Application to Task Oriented Domains , 1996, Artif. Intell..

[63]  Y. Bar-Shalom Tracking and data association , 1988 .

[64]  Harald Ganster,et al.  Active fusion - A new method applied to remote sensing image interpretation , 1996, Pattern Recognit. Lett..

[65]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[66]  Paul Vogt,et al.  Perceptual Grounding in Robots , 1997, EWLR.

[67]  Konstantinos A. Tarabanis,et al.  A survey of sensor planning in computer vision , 1995, IEEE Trans. Robotics Autom..

[68]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[69]  Thomas C. Henderson Traditional and Non-Traditional Robotic Sensors , 1990, NATO ASI Series.

[70]  Hamid R. Berenji,et al.  Co-evolutionary perception-based reinforcement learning for sensor allocation in autonomous vehicles , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[71]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[72]  Christopher M. Brown,et al.  Control of selective perception using bayes nets and decision theory , 1994, International Journal of Computer Vision.

[73]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[74]  Hugh Durrant-Whyte,et al.  Integration, coordination, and control of multi-sensor robot systems , 1987 .

[75]  Mark Cantley Resource management: An alternative view of the management process , 1984 .

[76]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[77]  Jeffrey Nash Optimal allocation of tracking resources , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[78]  Guillermo Ricardo Simari,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 2000 .

[79]  Vítor Sequeira,et al.  View planning for the 3D modelling of real world scenes , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[80]  James S. Albus,et al.  The Engineering of Mind , 1996, Inf. Sci..

[81]  Tom Henderson,et al.  Logical sensor systems , 1984, J. Field Robotics.

[82]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[83]  Erik Blasch,et al.  Information fusion for information superiority , 2000, Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093).

[84]  F.E. White,et al.  Managing data fusion systems in joint and coalition warfare , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[85]  Lawrence B. Holder,et al.  Decision-Theoretic Cooperative Sensor Planning , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  Brenan J. McCarragher Discrete event theory for the monitoring and control of robotic systems , 1998 .

[87]  Rudolf Kruse,et al.  Fusion: General concepts and characteristics , 2001, Int. J. Intell. Syst..

[88]  Eric I. Hsu,et al.  Incremental Negotiation and Coalition Formation for Resource-bounded Agents: Preliminary Report , 2002, AAAI 2002.

[89]  M. Karan,et al.  Sensor scheduling with active and image-based sensors for maneuvering targets , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[90]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[91]  J. R. Casar Corredera,et al.  Fuzzy reasoning for multisensor management , 1995 .

[92]  P.F. Muir A virtual sensor approach to robot kinematic identification: theory and experimental implementation , 1990, 1990 IEEE International Conference on Systems Engineering.