Cells and q-Schur algebras

This paper shows how the Kazhdan-Lusztig theory of cells can be directly applied to establish the quasi-heredity of q-Schur algebras. The application arises because of a very strong homological property enjoyed by certain cell ltrations for q-permutation modules.

[1]  R. Rouquier,et al.  Centers and simple modules for Iwahori-Hecke algebras , 1997 .

[2]  S. Donkin Standard Homological Properties for Quantum GLn , 1996 .

[3]  Jie Du,et al.  Canonical Bases for Irreducible Representations of Quantum GLn, II , 1995 .

[4]  P. H. Kropholler,et al.  REPRESENTATIONS AND COHOMOLOGY I: Basic representation theory of finite groups and associative algebras , 1994 .

[5]  Stuart Martin,et al.  Schur Algebras and Representation Theory , 1994 .

[6]  Jie Du,et al.  Canonical bases for irreducible representations of quantum GLn , 1992 .

[7]  E. Cline,et al.  Integral and graded quasi-hereditary algebras, I☆ , 1990 .

[8]  G. Lusztig,et al.  Canonical left cells in affine Weyl groups , 1988 .

[9]  Dan Barbasch,et al.  Primitive ideals and orbital integrals in complex classical groups , 1982 .

[10]  Masaki Kashiwara,et al.  Kazhdan-Lusztig conjecture and holonomic systems , 1981 .

[11]  George Lusztig,et al.  On a theorem of Benson and Curtis , 1981 .

[12]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[13]  Du Jie THE q-SCHUR ALGEBRA , 1998 .

[14]  S. Donkin Standard Homological Properties for Quantum GL , 1996 .

[15]  R. Dipper Polynomial representations of finite general linear groups in non-describing characteristic , 1991 .

[16]  Brian Parshall,et al.  Quantum Linear Groups , 1991 .

[17]  Gordon James,et al.  Representations of Hecke Algebras of General Linear Groups , 1986 .

[18]  David Kazhdan,et al.  Schubert varieties and Poincar'e duality , 1980 .