Random operator approach for word enumeration in braid groups

We investigate analytically the problem of enumeration of nonequivalent primitive words in the locally free, and braid groups for by analysing the random word statistics and target spaces on these groups. We develop a `symbolic dynamics' method for exact word enumeration in locally free groups and give arguments in support of the conjecture that the number of very long primitive words in the braid group is not sensitive to the precise local commutation relations. We touch briefly the connection of these problems with conventional random operator theory, localization phenomena and statistics of systems with quenched disorder. We also discuss the relation of particular problems of random operator theory to the theory of modular functions.

[1]  Vaughan F. R. Jones,et al.  On knot invariants related to some statistical mechanical models , 1989 .

[2]  Y. Fyodorov,et al.  Universality of level correlation function of sparse random matrices , 1991 .

[3]  Jean Desbois,et al.  Statistics of reduced words in locally free and braid groups: Abstract studies and applications to ballistic growth model , 1998 .

[4]  Walk inside Hofstadter's butterfly , 1989 .

[5]  Y. Sinai,et al.  Asymptotic Behavior of a Two-Dimensional Random Walk with Topological Constraints , 1994 .

[6]  Jonathan M. Borwein,et al.  On the Generating Function of the Integer Part: [nα + γ] , 1993 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  J. Bellissard K-theory of C*—Algebras in solid state physics , 1986 .

[9]  M. Berry Quantum fractals in boxes , 1996 .

[10]  Sergei Nechaev Statistics of Knots and Entangled Random Walks , 1996 .

[11]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .

[12]  Limiting-type theorem for conditional distributions of products of independent unimodular 2×2 matrices , 1991 .

[13]  S. Nechaev,et al.  Statistical mechanics of braided Markov chains: I. Analytic methods and numerical simulations , 1997 .

[14]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[15]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[16]  L. Kauffman Knots And Physics , 1991 .

[17]  Quantum group and magnetic translations Bethe ansatz for the Asbel-Hofstadter problem , 1993, cond-mat/9312088.

[18]  S. J. Patterson,et al.  HARMONIC ANALYSIS ON SYMMETRIC SPACES AND APPLICATIONS , 1990 .

[19]  D. Hejhal The Selberg trace formula for PSL (2, IR) , 1983 .

[20]  A. Vershik,et al.  Random walks on braid groups: Brownian bridges, complexity and statistics , 1996 .

[21]  J. Luck,et al.  Singular behavior of the density of states and the Lyapunov coefficient in binary random harmonic chains , 1985 .

[22]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[23]  Quantum harmonic oscillator algebra and link invariants , 1991, hep-th/9111005.

[24]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[25]  E. Montroll,et al.  Vibration Frequency Spectra of Disordered Lattices. I. Moments of the Spectra for Disordered Linear Chains , 1959 .

[26]  V. N. Tutubalin On Limit Theorems for the Product of Random Matrices , 1965 .

[27]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[28]  R. Lima,et al.  Exact Lyapunov exponent for infinite products of random matrices , 1994, chao-dyn/9407013.

[29]  B. Simon,et al.  Cantor spectrum for the almost Mathieu equation , 1982 .

[30]  B Derrida,et al.  Singular behaviour of certain infinite products of random 2 × 2 matrices , 1983 .

[31]  QUANTUM RANDOM WALKS AND TIME REVERSAL , 1992, hep-th/9208005.

[32]  H. Furstenberg Noncommuting random products , 1963 .

[33]  Wiegmann,et al.  Bethe-ansatz for the Bloch electron in magnetic field. , 1994, Physical review letters.

[34]  G. Viennot Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .