Informations in Models of Evolutionary Dynamics

Biological organisms adapt to changes by processing informations from different sources, most notably from their ancestors and from their environment. We review an approach to quantify these informations by analyzing mathematical models of evolutionary dynamics and show how explicit results are obtained for a solvable subclass of these models. In several limits, the results coincide with those obtained in studies of information processing for communication, gambling or thermodynamics. In the most general case, however, information processing by biological populations shows unique features that motivate the analysis of specific models.

[1]  W. Bialek,et al.  Information flow and optimization in transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[2]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[3]  F. Tostevin,et al.  Mutual information between input and output trajectories of biochemical networks. , 2009, Physical review letters.

[4]  Jeremy L. England,et al.  Statistical physics of self-replication. , 2012, The Journal of chemical physics.

[5]  Udo Seifert,et al.  Efficiency of a Brownian information machine , 2012, 1203.0184.

[6]  Carl T. Bergstrom,et al.  Phenotypic diversity as an adaptation to environmental uncertainty , 2008 .

[7]  Olivier J. J. Michel,et al.  The relation between Granger causality and directed information theory: a review , 2012, Entropy.

[8]  Paul François,et al.  Evolving phenotypic networks in silico. , 2014, Seminars in cell & developmental biology.

[9]  Haim H. Permuter,et al.  Interpretations of Directed Information in Portfolio Theory, Data Compression, and Hypothesis Testing , 2009, IEEE Transactions on Information Theory.

[10]  R. Cheong,et al.  How Information Theory Handles Cell Signaling and Uncertainty , 2012, Science.

[11]  Jordan M. Horowitz,et al.  Designing optimal discrete-feedback thermodynamic engines , 2011, 1110.6808.

[12]  W. Bialek Biophysics: Searching for Principles , 2012 .

[13]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[14]  Clive G. Bowsher,et al.  Environmental sensing, information transfer, and cellular decision-making. , 2014, Current opinion in biotechnology.

[15]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[17]  U. Seifert,et al.  Extracting work from a single heat bath through feedback , 2011, 1102.3826.

[18]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[19]  Erik Ordentlich,et al.  Universal portfolios with side information , 1996, IEEE Trans. Inf. Theory.

[20]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[21]  Illtyd Trethowan Causality , 1938 .

[22]  C. Stadtländer,et al.  Quantitative biology: from molecular to cellular systems , 2015, Journal of biological dynamics.

[23]  J. Cheverud Genetics and analysis of quantitative traits , 1999 .

[24]  Yuhai Tu,et al.  The energy-speed-accuracy tradeoff in sensory adaptation , 2012, Nature Physics.

[25]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[26]  Yuji Hirono,et al.  Jarzynski-Type Equalities in Gambling: Role of Information in Capital Growth , 2015, 1505.06216.

[27]  Mathieu Hemery,et al.  Evolution of sparsity and modularity in a model of protein allostery. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Andrew R. Barron,et al.  A bound on the financial value of information , 1988, IEEE Trans. Inf. Theory.

[29]  Aleksandra M Walczak,et al.  Information transmission in genetic regulatory networks: a review , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Stanislas Leibler,et al.  The Value of Information for Populations in Varying Environments , 2010, ArXiv.

[31]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[32]  Y. Iwasa,et al.  Optimal Mixed Strategies in Stochastic Environments , 1995 .

[33]  Thierry Mora,et al.  Thermodynamics of statistical inference by cells. , 2014, Physical review letters.

[34]  Carl T. Bergstrom,et al.  The fitness value of information , 2005, Oikos.

[35]  S. Leibler,et al.  A model for the generation and transmission of variations in evolution , 2013, Proceedings of the National Academy of Sciences.

[36]  V. Pande,et al.  On the application of statistical physics to evolutionary biology. , 2009, Journal of theoretical biology.

[37]  S. F. Taylor,et al.  Information and fitness , 2007, 0712.4382.

[38]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[40]  I. Nemenman,et al.  Optimal Signal Processing in Small Stochastic Biochemical Networks , 2006, PloS one.

[41]  M. Wall Quantitative biology : from molecular to cellular systems , 2012 .

[42]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[43]  M. Lässig,et al.  Fitness flux and ubiquity of adaptive evolution , 2010, Proceedings of the National Academy of Sciences.

[44]  Environmental Sensing , 2005, Science.

[45]  Imre Csiszár,et al.  Axiomatic Characterizations of Information Measures , 2008, Entropy.

[46]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[47]  Haim H. Permuter,et al.  Analogy between gambling and measurement-based work extraction , 2014, 2014 IEEE International Symposium on Information Theory.

[48]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[49]  Yuki Sughiyama,et al.  Fluctuation Relations of Fitness and Information in Population Dynamics. , 2015, Physical review letters.

[50]  Henrik Sandberg,et al.  Second-law-like inequalities with information and their interpretations , 2014, 1409.5351.

[51]  Carl T. Bergstrom,et al.  Shannon information and biological fitness , 2004, Information Theory Workshop.

[52]  S. Leal Genetics and Analysis of Quantitative Traits , 2001 .

[53]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[54]  I. Nemenman,et al.  Information Transduction Capacity of Noisy Biochemical Signaling Networks , 2011, Science.

[55]  Y. Iwasa,et al.  Free fitness that always increases in evolution. , 1988, Journal of theoretical biology.