Optimal strategies in the average consensus problem

We prove that for a set of communicating agents to compute the average of their initial positions (average consensus problem), the optimal topology of communication is given by a de Bruijn's graph. Consensus is then reached in a finitely many steps. A more general family of strategies, constructed by block Kronecker products, is investigated and compared to Cayley strategies.

[1]  Randal W. Beard,et al.  A coordination architecture for spacecraft formation control , 2001, IEEE Trans. Control. Syst. Technol..

[2]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[3]  Naomi Ehrich Leonard,et al.  Stabilization and coordination of underwater gliders , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[4]  Ruggero Carli,et al.  Communication constraints in the average consensus problem , 2008, Autom..

[5]  Dhiraj K. Pradhan,et al.  The De Bruijn Multiprocessor Network: A Versatile Parallel Processing and Sorting Network for VLSI , 1989, IEEE Trans. Computers.

[6]  Robert Morris,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM 2001.

[7]  Manuel Mazo,et al.  Multi-robot tracking of a moving object using directional sensors , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  R. Srikant,et al.  Consensus with Quantized Information Updates , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[9]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[10]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[11]  Ruggero Carli,et al.  On the state agreement with quantized information , 2006 .

[12]  László Babai,et al.  Spectra of Cayley graphs , 1979, J. Comb. Theory B.

[13]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[14]  K.H. Johansson,et al.  Distributed and Collaborative Estimation over Wireless Sensor Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[15]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[16]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM '01.

[17]  F. Fagnani,et al.  Communication constraints in coordinated consensus problems , 2006, 2006 American Control Conference.

[18]  H. Neudecker,et al.  Block Kronecker products and the vecb operator , 1991 .

[19]  Kostas J. Kyriakopoulos,et al.  Nonholonomic navigation and control of cooperating mobile manipulators , 2003, IEEE Trans. Robotics Autom..

[20]  Manfredi Maggiore,et al.  Necessary and sufficient graphical conditions for formation control of unicycles , 2005, IEEE Transactions on Automatic Control.

[21]  George J. Pappas,et al.  Stable flocking of mobile agents part I: dynamic topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[22]  Pierre Fraigniaud,et al.  D2B: A de Bruijn based content-addressable network , 2006, Theor. Comput. Sci..

[23]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[24]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[25]  Dimos V. Dimarogonas,et al.  On the Rendezvous Problem for Multiple Nonholonomic Agents , 2007, IEEE Transactions on Automatic Control.

[26]  Sonia Martínez,et al.  Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions , 2006, IEEE Transactions on Automatic Control.