The Representation of S-Cone Signals in Primary Visual Cortex

Recent studies of middle-wavelength-sensitive and long-wavelength-sensitive cone responses in primate primary visual cortex (V1) have challenged the view that color and form are represented by distinct neuronal populations. Individual V1 neurons exhibit hallmarks of both color and form processing (cone opponency and orientation selectivity), and many display cone interactions that do not fit classic chromatic/achromatic classifications. Comparable analysis of short-wavelength-sensitive (S) cone responses has yet to be achieved and is of considerable interest because S-cones are the basis for the primordial mammalian chromatic pathway. Using intrinsic and two-photon imaging techniques in the tree shrew, we assessed the properties of V1 layer 2/3 neurons responsive to S-cone stimulation. These responses were orientation selective, exhibited distinct spatiotemporal properties, and reflected integration of S-cone inputs via opponent, summing, and intermediate configurations. Our observations support a common framework for the representation of cone signals in V1, one that endows orientation-selective neurons with a range of chromatic, achromatic, and mixed response properties.

[1]  G S Brindley,et al.  The flicker fusion frequency of the blue‐sensitive mechanism of colour vision , 1966, The Journal of physiology.

[2]  Peter H. Schiller,et al.  Lack of blue OFF-center cells in the visual system of the monkey , 1978, Brain Research.

[3]  F. M. D. Monasterio Asymmetry of on- and off-pathways of blue-sensitive cones of the retina of macaques , 1979, Brain Research.

[4]  R. M. Boynton,et al.  Temporal modulation sensitivity of the blue mechanism: Measurements made without chromatic adaptation , 1980, Vision Research.

[5]  A L Humphrey,et al.  Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping , 1980, The Journal of comparative neurology.

[6]  Martin S. Banks,et al.  Depth of focus, eye size and visual acuity , 1980, Vision Research.

[7]  D. Macleod,et al.  Blue-sensitive cones do not contribute to luminance. , 1980, Journal of the Optical Society of America.

[8]  E. Zrenner,et al.  Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.

[9]  H. Spekreijse,et al.  The “silent substitution” method in visual research , 1982, Vision Research.

[10]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Non-fluorescent dye staining of primate blue cones. , 1983, Investigative ophthalmology & visual science.

[12]  D. Williams,et al.  Consequences of spatial sampling by a human photoreceptor mosaic. , 1983, Science.

[13]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[14]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[16]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  G. H. Jacobs,et al.  Spectral mechanisms and color vision in the tree shrew (Tupaia belangeri) , 1986, Vision Research.

[18]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[19]  A. Adams,et al.  Short-wavelength-sensitive cones do not contribute to mesopic luminosity. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[20]  M. Wong-Riley,et al.  Histochemical localization of cytochrome oxidase activity in the visual system of the tree shrew: Normal patterns and the effect of retinal impulse blockage , 1988, The Journal of comparative neurology.

[21]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  C. Stromeyer,et al.  Contribution of human short‐wave cones to luminance and motion detection. , 1989, The Journal of physiology.

[23]  K. Mullen,et al.  Human photopic vision with only short wavelength cones: post‐receptoral properties. , 1989, The Journal of physiology.

[24]  L. Peichl,et al.  Topography of cones and rods in the tree shrew retina , 1989, The Journal of comparative neurology.

[25]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[27]  H. M. Petry,et al.  Visual pigments of the tree shrew (Tupaia belangeri) and greater galago (Galago crassicaudatus): A microspectrophotometric investigation , 1990, Vision Research.

[28]  Donald I. A. MacLeod,et al.  The temporal properties of the human short-wave photoreceptors and their associated pathways , 1991, Vision Research.

[29]  H. M. Petry,et al.  Psychophysical measurement of spectral sensitivity and color vision in red-light-reared tree shrews (Tupaia belangeri) , 1991, Vision Research.

[30]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[31]  D. Fitzpatrick,et al.  The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  D. Fitzpatrick,et al.  Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew , 1992, The Journal of comparative neurology.

[33]  R K Carder,et al.  Neurochemical compartmentation of monkey and human visual cortex: Similarities and variations in calbindin immunoreactivity across species , 1993, Visual Neuroscience.

[34]  J. T. Erichsen,et al.  Immunocytochemical identification of photoreceptor populations in the tree shrew retina , 1993, Brain Research.

[35]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  B. B. Lee,et al.  Temporal response of ganglion cells of the macaque retina to cone-specific modulation. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  D. Fitzpatrick The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. , 1996, Cerebral cortex.

[38]  S. Engel,et al.  Colour tuning in human visual cortex measured with functional magnetic resonance imaging , 1997, Nature.

[39]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[40]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[41]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[42]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[43]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[44]  B. Wandell Computational neuroimaging of human visual cortex. , 1999, Annual review of neuroscience.

[45]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[46]  R. L. Valois,et al.  Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity , 2000, Vision Research.

[47]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[48]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  David J. Calkins,et al.  Seeing with S cones , 2001, Progress in Retinal and Eye Research.

[50]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[51]  E. Callaway,et al.  S Cone Contributions to the Magnocellular Visual Pathway in Macaque Monkey , 2002, Neuron.

[52]  D. Fitzpatrick,et al.  Spatial coding of position and orientation in primary visual cortex , 2002, Nature Neuroscience.

[53]  Robert Shapley,et al.  Neural mechanisms for color perception in the primary visual cortex , 2002, Current Opinion in Neurobiology.

[54]  William H. Press,et al.  Numerical recipes in C , 2002 .

[55]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[56]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[57]  Hong Zhou,et al.  The coding of uniform colour figures in monkey visual cortex , 2003, The Journal of physiology.

[58]  E. Callaway,et al.  Parallel colour-opponent pathways to primary visual cortex , 2003, Nature.

[59]  Jens Frahm,et al.  Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation , 1996, Experimental Brain Research.

[60]  M. S. Loop,et al.  Color vision sensitivity in normally dichromatic species and humans , 2004, Visual Neuroscience.

[61]  J. Verweij,et al.  L and M Cone Contributions to the Midget and Parasol Ganglion Cell Receptive Fields of Macaque Monkey Retina , 2004, The Journal of Neuroscience.

[62]  R. Shapley,et al.  Cone inputs in macaque primary visual cortex. , 2004, Journal of Neurophysiology.

[63]  Stephen D Van Hooser,et al.  Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). , 2005, Journal of neurophysiology.

[64]  P. Lennie,et al.  Chromatic Gain Controls in Visual Cortical Neurons , 2005, The Journal of Neuroscience.

[65]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[66]  K. Mullen,et al.  Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise , 2005, Vision Research.

[67]  B. Wandell,et al.  Specializations for Chromatic and Temporal Signals in Human Visual Cortex , 2005, Journal of Neuroscience.

[68]  T. Albright,et al.  Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1. , 2005, Journal of neurophysiology.

[69]  L. Peichl Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[70]  Bevil R. Conway,et al.  Spatial and Temporal Properties of Cone Signals in Alert Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[71]  Paul R. Martin,et al.  Geniculocortical relay of blue-off signals in the primate visual system , 2006, Proceedings of the National Academy of Sciences.

[72]  R. Hess,et al.  Selectivity of human retinotopic visual cortex to S‐cone‐opponent, L/M‐cone‐opponent and achromatic stimulation , 2007, The European journal of neuroscience.

[73]  E J Chichilnisky,et al.  Cone inputs to simple and complex cells in V1 of awake macaque. , 2007, Journal of neurophysiology.

[74]  D. Knill,et al.  The role of memory in visually guided reaching. , 2007, Journal of vision.

[75]  Jonathon Shlens,et al.  Spatial Properties and Functional Organization of Small Bistratified Ganglion Cells in Primate Retina , 2007, The Journal of Neuroscience.

[76]  R. Hess,et al.  Collinear facilitation in color vision. , 2007, Journal of vision.

[77]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[78]  Paul R. Martin,et al.  Color signals in the primary visual cortex of marmosets. , 2008, Journal of vision.

[79]  T. Papathomas,et al.  Audiovisual short-term influences and aftereffects in motion: examination across three sets of directional pairings. , 2008, Journal of vision.

[80]  Geraint Rees,et al.  Combined orientation and colour information in human V1 for both L–M and S-cone chromatic axes , 2008, NeuroImage.

[81]  P. Lennie,et al.  Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque , 2008, The Journal of Neuroscience.

[82]  Serge O Dumoulin,et al.  Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI , 2008, The European journal of neuroscience.

[83]  Paul R. Martin,et al.  Retinal ganglion cell inputs to the koniocellular pathway , 2008, The Journal of comparative neurology.

[84]  B. B. Lee,et al.  Transmission of blue (S) cone signals through the primate lateral geniculate nucleus , 2008, The Journal of physiology.

[85]  Paul R. Martin,et al.  Segregation of short-wavelength sensitive (“blue”) cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets , 2008, Vision Research.

[86]  R. Shapley,et al.  The Orientation Selectivity of Color-Responsive Neurons in Macaque V1 , 2008, The Journal of Neuroscience.

[87]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[88]  Karl R Gegenfurtner,et al.  Geometry in Nature , 1993 .

[89]  Alex R. Wade,et al.  Long-range suppressive interactions between S-cone and luminance channels , 2009, Vision Research.