Extensions to the core ontology for robotics and automation

The working group Ontologies for Robotics and Automation, sponsored by the IEEE Robotics & Automation Society, recently proposed a Core Ontology for Robotics and Automation (CORA). This ontology was developed to provide an unambiguous definition of core notions of robotics and related topics. It is based on SUMO, a top-level ontology of general concepts, and on ISO 8373:2012 standard, developed by the ISO/TC184/SC2 Working Group, which defines-in natural language-important terms in the domain of Robotics and Automation (R&A). In this paper, we introduce a set of ontologies that complement CORA with notions such as industrial design and positioning. We also introduce updates to CORA in order to provide more ontologically sound representations of autonomy and of robot parts. HighlightsWe discuss extensions to a core ontology for the robotics and automation field.The ontology aims to specify the main notions across robotics subdomains.We define robot, robotic system, robotic environment, and related notions.We discuss concepts regarding the notion of design, in industrial contexts.We discuss notions regarding the modes of operation of a robot.We discuss notions regarding the position, orientation and pose of a robot.

[1]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[2]  Asunción Gómez-Pérez,et al.  METHONTOLOGY: From Ontological Art Towards Ontological Engineering , 1997, AAAI 1997.

[3]  Simon A. Dobson,et al.  A Unified Semantics Space Model , 2007, LoCA.

[4]  Emilio Miguelanez,et al.  An IEEE standard Ontology for Robotics and Automation , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Maki K. Habib,et al.  Applied ontologies and standards for service robots , 2013, Robotics Auton. Syst..

[6]  Giancarlo Guizzardi,et al.  Ontological foundations for structural conceptual models , 2005 .

[7]  Alessandro Saffiotti,et al.  Robot task planning using semantic maps , 2008, Robotics Auton. Syst..

[8]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[9]  Jacek Malec,et al.  Knowledge-Based Industrial Robotics , 2013, SCAI.

[10]  CimianoPhilipp,et al.  DOLCE ergo SUMO , 2007 .

[11]  Anupriya Ankolekar,et al.  DOLCE ergo SUMO: On foundational and domain models in the SmartWeb Integrated Ontology (SWIntO) , 2007, J. Web Semant..

[12]  Raj Madhavan,et al.  Defining positioning in a core ontology for robotics , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  James S. Albus,et al.  Toward a Generic Model for Autonomy Levels for Unmanned Systems (ALFUS) , 2003 .

[14]  Satyandra K. Gupta,et al.  Knowledge driven robotics for kitting applications , 2013, Robotics Auton. Syst..

[15]  Benjamin Kuipers,et al.  Autonomous Development of a Grounded Object Ontology by a Learning Robot , 2007, AAAI.

[16]  S. Morita Geometry of differential forms , 2001 .

[17]  Sébastien Gérard,et al.  Towards a core ontology for robotics and automation , 2013, Robotics Auton. Syst..

[18]  Nicola Guarino,et al.  An Overview of OntoClean , 2004, Handbook on Ontologies.

[19]  Mogens Myrup Andreasen,et al.  The design ontology: foundation for the design knowledge exchange and management , 2010 .

[20]  Il Hong Suh,et al.  Ontology-Based Unified Robot Knowledge for Service Robots in Indoor Environments , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[21]  John A. Bateman,et al.  Modelling Models of Robot Navigation Using Formal Spatial Ontology , 2004, Spatial Cognition.

[22]  Steffen Staab,et al.  International Handbooks on Information Systems , 2013 .

[23]  Il Hong Suh,et al.  Ontology-based multi-layered robot knowledge framework (OMRKF) for robot intelligence , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Xiaoping Chen,et al.  Ontology Based Object Categorization for Robots , 2005, PAKM.

[25]  John K. Debenham Knowledge Engineering , 1998, Encyclopedia of Social Network Analysis and Mining.

[26]  Michael Uschold,et al.  Ontology-based methods for enhancing autonomous vehicle path planning , 2004, Robotics Auton. Syst..

[27]  Abdel-Illah Mouaddib,et al.  Ontology Based Spatial Planning for Human-Robot Interaction , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.