Supersingular Isogeny Graphs and Endomorphism Rings: Reductions and Solutions
暂无分享,去创建一个
Kristin E. Lauter | Sean Hallgren | Kirsten Eisenträger | Christophe Petit | Travis Morrison | K. Lauter | T. Morrison | C. Petit | Sean Hallgren | Kirsten Eisenträger
[1] Steven D. Galbraith,et al. Constructing supersingular elliptic curves with a given endomorphism ring , 2013, 1301.6875.
[2] Yan Bo Ti,et al. Fault Attack on Supersingular Isogeny Cryptosystems , 2017, PQCrypto.
[3] Christophe Petit,et al. Faster Algorithms for Isogeny Problems Using Torsion Point Images , 2017, ASIACRYPT.
[4] Steven D. Galbraith,et al. Computing isogenies between supersingular elliptic curves over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mat , 2013, Designs, Codes and Cryptography.
[5] Roger C. Alperin,et al. of quaternion algebras , 1979 .
[6] Vijaya Kumar Murty,et al. EFFECTIVE VERSIONS OF THE CHEBOTAREV DENSITY THEOREM FOR FUNCTION FIELDS , 1994 .
[7] P. Stevenhagen,et al. ELLIPTIC FUNCTIONS , 2022 .
[8] Reza Azarderakhsh,et al. A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies , 2017, Financial Cryptography.
[9] Tim Eller,et al. Constructing Supersingular Elliptic Curves , 2019 .
[10] Steven D. Galbraith,et al. Identification Protocols and Signature Schemes Based on Supersingular Isogeny Problems , 2017, ASIACRYPT.
[11] Steven D. Galbraith,et al. On the Security of Supersingular Isogeny Cryptosystems , 2016, ASIACRYPT.
[12] JUAN MARCOS CERVIÑO. SUPERSINGULAR ELLIPTIC CURVES AND MAXIMAL QUATERNIONIC ORDERS , .
[13] J. Urry. Complexity , 2006, Interpreting Art.
[14] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .
[15] Steven D. Galbraith,et al. Computing isogenies between supersingular elliptic curves over F_p , 2013 .
[16] S. Lang,et al. Abelian varieties over finite fields , 2005 .
[17] A. Pizer,et al. An algorithm for computing modular forms on Γ0(N) , 1980 .
[18] Kristin E. Lauter,et al. Cryptographic Hash Functions from Expander Graphs , 2008, Journal of Cryptology.
[19] W. Waterhouse,et al. Abelian varieties over finite fields , 1969 .
[20] P. Kam,et al. : 4 , 1898, You Can Cross the Massacre on Foot.
[21] Saulo Alves de Araujo,et al. Identification of novel keloid biomarkers through Profiling of Tissue Biopsies versus Cell Cultures in Keloid Margin specimens Compared to adjacent Normal Skin , 2010, Eplasty.
[22] Benjamin Wesolowski,et al. Loop-Abort Faults on Supersingular Isogeny Cryptosystems , 2017, PQCrypto.
[23] Damien Stehlé,et al. Low-dimensional lattice basis reduction revisited , 2004, TALG.
[24] D. Kohel. Endomorphism rings of elliptic curves over finite fields , 1996 .
[25] Lajos Rónyai,et al. Algorithmic properties of maximal orders in simple algebras over Q , 1992, computational complexity.
[26] M. Vignéras. Arithmétique des Algèbres de Quaternions , 1980 .
[27] Kristin E. Lauter,et al. Hard and Easy Problems for Supersingular Isogeny Graphs , 2017, IACR Cryptol. ePrint Arch..
[28] Joseph H. Silverman,et al. The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.
[29] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[30] Reinier Bröker,et al. CONSTRUCTING SUPERSINGULAR ELLIPTIC CURVES , 2007 .
[31] S. Galbraith. Constructing Isogenies between Elliptic Curves Over Finite Fields , 1999 .
[32] David Jao,et al. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2011, J. Math. Cryptol..
[33] David Jao,et al. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2014, J. Math. Cryptol..
[34] David Jao,et al. A Quantum Algorithm for Computing Isogenies between Supersingular Elliptic Curves , 2014, INDOCRYPT.
[35] Sean Hallgren,et al. On the Hardness of Computing Endomorphism Rings of Supersingular Elliptic Curves , 2017, IACR Cryptol. ePrint Arch..
[36] Markus Kirschmer,et al. Algorithmic Enumeration of Ideal Classes for Quaternion Orders , 2008, SIAM J. Comput..
[37] Kristin E. Lauter,et al. On the quaternion -isogeny path problem , 2014, LMS J. Comput. Math..