Supersingular Isogeny Graphs and Endomorphism Rings: Reductions and Solutions

In this paper, we study several related computational problems for supersingular elliptic curves, their isogeny graphs, and their endomorphism rings. We prove reductions between the problem of path finding in the \(\ell \)-isogeny graph, computing maximal orders isomorphic to the endomorphism ring of a supersingular elliptic curve, and computing the endomorphism ring itself. We also give constructive versions of Deuring’s correspondence, which associates to a maximal order in a certain quaternion algebra an isomorphism class of supersingular elliptic curves. The reductions are based on heuristics regarding the distribution of norms of elements in quaternion algebras.

[1]  Steven D. Galbraith,et al.  Constructing supersingular elliptic curves with a given endomorphism ring , 2013, 1301.6875.

[2]  Yan Bo Ti,et al.  Fault Attack on Supersingular Isogeny Cryptosystems , 2017, PQCrypto.

[3]  Christophe Petit,et al.  Faster Algorithms for Isogeny Problems Using Torsion Point Images , 2017, ASIACRYPT.

[4]  Steven D. Galbraith,et al.  Computing isogenies between supersingular elliptic curves over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mat , 2013, Designs, Codes and Cryptography.

[5]  Roger C. Alperin,et al.  of quaternion algebras , 1979 .

[6]  Vijaya Kumar Murty,et al.  EFFECTIVE VERSIONS OF THE CHEBOTAREV DENSITY THEOREM FOR FUNCTION FIELDS , 1994 .

[7]  P. Stevenhagen,et al.  ELLIPTIC FUNCTIONS , 2022 .

[8]  Reza Azarderakhsh,et al.  A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies , 2017, Financial Cryptography.

[9]  Tim Eller,et al.  Constructing Supersingular Elliptic Curves , 2019 .

[10]  Steven D. Galbraith,et al.  Identification Protocols and Signature Schemes Based on Supersingular Isogeny Problems , 2017, ASIACRYPT.

[11]  Steven D. Galbraith,et al.  On the Security of Supersingular Isogeny Cryptosystems , 2016, ASIACRYPT.

[12]  JUAN MARCOS CERVIÑO SUPERSINGULAR ELLIPTIC CURVES AND MAXIMAL QUATERNIONIC ORDERS , .

[13]  J. Urry Complexity , 2006, Interpreting Art.

[14]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[15]  Steven D. Galbraith,et al.  Computing isogenies between supersingular elliptic curves over F_p , 2013 .

[16]  S. Lang,et al.  Abelian varieties over finite fields , 2005 .

[17]  A. Pizer,et al.  An algorithm for computing modular forms on Γ0(N) , 1980 .

[18]  Kristin E. Lauter,et al.  Cryptographic Hash Functions from Expander Graphs , 2008, Journal of Cryptology.

[19]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[20]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[21]  Saulo Alves de Araujo,et al.  Identification of novel keloid biomarkers through Profiling of Tissue Biopsies versus Cell Cultures in Keloid Margin specimens Compared to adjacent Normal Skin , 2010, Eplasty.

[22]  Benjamin Wesolowski,et al.  Loop-Abort Faults on Supersingular Isogeny Cryptosystems , 2017, PQCrypto.

[23]  Damien Stehlé,et al.  Low-dimensional lattice basis reduction revisited , 2004, TALG.

[24]  D. Kohel Endomorphism rings of elliptic curves over finite fields , 1996 .

[25]  Lajos Rónyai,et al.  Algorithmic properties of maximal orders in simple algebras over Q , 1992, computational complexity.

[26]  M. Vignéras Arithmétique des Algèbres de Quaternions , 1980 .

[27]  Kristin E. Lauter,et al.  Hard and Easy Problems for Supersingular Isogeny Graphs , 2017, IACR Cryptol. ePrint Arch..

[28]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[29]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[30]  Reinier Bröker,et al.  CONSTRUCTING SUPERSINGULAR ELLIPTIC CURVES , 2007 .

[31]  S. Galbraith Constructing Isogenies between Elliptic Curves Over Finite Fields , 1999 .

[32]  David Jao,et al.  Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2011, J. Math. Cryptol..

[33]  David Jao,et al.  Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2014, J. Math. Cryptol..

[34]  David Jao,et al.  A Quantum Algorithm for Computing Isogenies between Supersingular Elliptic Curves , 2014, INDOCRYPT.

[35]  Sean Hallgren,et al.  On the Hardness of Computing Endomorphism Rings of Supersingular Elliptic Curves , 2017, IACR Cryptol. ePrint Arch..

[36]  Markus Kirschmer,et al.  Algorithmic Enumeration of Ideal Classes for Quaternion Orders , 2008, SIAM J. Comput..

[37]  Kristin E. Lauter,et al.  On the quaternion -isogeny path problem , 2014, LMS J. Comput. Math..