Group-orthogonal multicarrier CDMA

In the presence of frequency-selective multipath fading channels, code-division multiple access (CDMA) suffers from multiuser interference (MUI) and intersymbol interference (ISI); but when properly designed, it enjoys multipath diversity. Orthogonal frequency-division multiple access (OFDMA) is MUI-free, but it does not enable the available channel diversity without employing error-control coding. On the other hand, coded OFDMA may achieve lower diversity than a CDMA system employing the same error-control codes. In this paper, we merge the advantages of OFDMA and CDMA to minimize MUI effects, and also enable the maximum available diversity for every user. In our group orthogonal multicarrier CDMA (GO-MC-CDMA) scheme, groups of users share a set of subcarriers. By judiciously choosing group subcarriers, we guarantee that every user transmits with maximum diversity. MUI is only present among users in the same group, and is suppressed via multiuser detection, which becomes practically feasible because we assign a small number of users per group. Performance is analyzed, and simulations are carried out to illustrate the merits of GO-MC-CDMA relative to existing alternatives.

[1]  M. Schwartz,et al.  Communication Systems and Techniques , 1996, IEEE Communications Magazine.

[2]  Georgios B. Giannakis,et al.  Joint coding-precoding with low-complexity turbo-decoding , 2004, IEEE Transactions on Wireless Communications.

[3]  E-L. Kuan,et al.  Overview of Multicarrier CDMA , 2004 .

[4]  Georgios B. Giannakis,et al.  Block precoding for MUI/ISI-resilient generalized multicarrier CDMA with multirate capabilities , 2001, IEEE Trans. Commun..

[5]  Hikmet Sari,et al.  Orthogonal frequency-division multiple access and its application to CATV networks , 1998, Eur. Trans. Telecommun..

[6]  Georgios B. Giannakis,et al.  Wireless multicarrier communications , 2000, IEEE Signal Process. Mag..

[7]  Ramjee Prasad,et al.  Design and performance of multicarrier CDMA system in frequency-selective Rayleigh fading channels , 1999 .

[8]  G. Giannakis,et al.  Wireless Multicarrier Communications where Fourier Meets , 2022 .

[9]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[10]  Georgios B. Giannakis,et al.  Joint Coded-Precoded OFDM with Low-Complexity Turbo-decoding , 2002 .

[11]  Georgios B. Giannakis,et al.  Complex-field coding for OFDM over fading wireless channels , 2003, IEEE Trans. Inf. Theory.

[12]  Wayne E. Stark,et al.  Optimal diversity allocation in multiuser communication systems. I. System model , 1999, IEEE Trans. Commun..

[13]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[14]  Anna Scaglione,et al.  AMOUR-generalized multicarrier transceivers for blind CDMA regardless of multipath , 2000, IEEE Trans. Commun..

[15]  Dennis Goeckel Optimal Diversity Allocation in Multi-User Communication Systems-Part II: Optimization , 2000 .

[16]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[17]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[18]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[19]  Umberto Mengali,et al.  A comparison of pilot-aided channel estimation methods for OFDM systems , 2001, IEEE Trans. Signal Process..

[20]  Xiaodong Wang,et al.  Performance of blind and group-blind multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[21]  Georgios B. Giannakis,et al.  Space-time diversity systems based on linear constellation precoding , 2003, IEEE Trans. Wirel. Commun..

[22]  Dennis Goeckel Optimal Diversity Allocation in Multi-User Communication Systems-Part I: System Model , 1999 .

[23]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[24]  Emanuele Viterbo,et al.  Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel , 1998, IEEE Trans. Inf. Theory.

[25]  Georgios B. Giannakis,et al.  Load-Adaptive MUI/ISI-Resilient Generalized Multi-Carrier CDMA with Linear and DF Receivers , 2000, Eur. Trans. Telecommun..

[26]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[27]  Wayne E. Stark,et al.  Optimal diversity allocation in multiuser communication systems. II. Optimization , 2000, IEEE Trans. Commun..

[28]  Georgios B. Giannakis,et al.  Bandwidth- and power-efficient multicarrier multiple access , 2003, IEEE Trans. Commun..

[29]  Mahesh K. Varanasi Parallel group detection for synchronous CDMA communication over frequency-selective Rayleigh fading channels , 1996, IEEE Trans. Inf. Theory.

[30]  Fuyun Ling Optimal reception, performance bound, and cutoff rate analysis of references-assisted coherent CDMA communications with applications , 1999, IEEE Trans. Commun..

[31]  Georgios B. Giannakis,et al.  Frequency-hopped generalized MC-CDMA for multipath and interference suppression , 2000, MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155).

[32]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[33]  J. Cavers An analysis of pilot symbol assisted modulation for Rayleigh fading channels (mobile radio) , 1991 .

[34]  Georgios B. Giannakis,et al.  Linear constellation-precoding for OFDM with maximum multipath diversity and coding gains , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[35]  Dennis Goeckel,et al.  On the design of multidimensional signal sets for OFDM systems , 2002, IEEE Trans. Commun..