Type Iax Supernovae

[1]  J. Wheeler,et al.  Supernovae , 2019, Stars and Stellar Processes.

[2]  T. Morokuma,et al.  OISTER Optical and Near-Infrared Observations for the field of 3FGL J1804.5-0850 close to the position of IceCube-181023A , 2018 .

[3]  K. Maguire,et al.  PESSTO spectroscopic classification of optical transients , 2018 .

[4]  V. Dyk,et al.  Supernova Progenitors Observed with HST , 2017 .

[5]  A. Levan,et al.  Investigating the diversity of supernovae type Iax: a MUSE and NOT spectroscopic study of their environments , 2017, 1707.04270.

[6]  J. Zhang,et al.  A Polarization Sequence for Type Ia Supernovae? , 2017, 1704.06386.

[7]  D. Townsley,et al.  Nucleosynthesis in thermonuclear supernovae , 2017, 1704.00415.

[8]  F. Roepke Combustion in thermonuclear supernova explosions , 2017, 1703.09274.

[9]  P. E. Nugent,et al.  Color Me Intrigued: The Discovery of iPTF 16fnm, an SN 2002cx–like Object , 2017, 1703.07449.

[10]  J. Lattanzio,et al.  Super-AGB Stars and their Role as Electron Capture Supernova Progenitors , 2017, Publications of the Astronomical Society of Australia.

[11]  S. Taubenberger The Extremes of Thermonuclear Supernovae , 2017, 1703.00528.

[12]  University of Hawaii at Manoa,et al.  Growing evidence that SNe Iax are not a one-parameter family: the case of PS1-12bwh , 2017, 1701.05459.

[13]  A. Gal-yam Observational and Physical Classification of Supernovae , 2016, 1611.09353.

[14]  E. Quataert,et al.  Convection Destroys the Core/Mantle Structure in Hybrid C/O/Ne White Dwarfs , 2016, 1611.03061.

[15]  J. Schwab,et al.  WAIT FOR IT: POST-SUPERNOVA WINDS DRIVEN BY DELAYED RADIOACTIVE DECAYS , 2016, 1610.06573.

[16]  O. Graur,et al.  LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies , 2016, 1609.02923.

[17]  S. Jha,et al.  Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS , 2016 .

[18]  P. Nugent,et al.  SN2002es-LIKE SUPERNOVAE FROM DIFFERENT VIEWING ANGLES , 2016, 1606.05655.

[19]  R. Margutti,et al.  An Open Catalog for Supernova Data , 2016, 1605.01054.

[20]  F. Timmes,et al.  TURBULENT CHEMICAL DIFFUSION IN CONVECTIVELY BOUNDED CARBON FLAMES , 2016, 1603.08921.

[21]  C. McCully,et al.  Optical and near infrared observations of SN 2014ck: an outlier among the Type Iax supernovae , 2016, 1603.07084.

[22]  Santiago,et al.  The type Iax supernova, SN 2015H: A white dwarf deflagration candidate , 2016, 1603.04728.

[23]  E. Bravo,et al.  Explosion of white dwarfs harboring hybrid CONe cores , 2016, 1603.00641.

[24]  N. Langer,et al.  Models for the evolution of close binaries with He-Star and WD components towards Type Ia supernova explosions , 2016, 1603.00768.

[25]  Alan C. Calder,et al.  TYPE Ia SUPERNOVA EXPLOSIONS FROM HYBRID CARBON–OXYGEN–NEON WHITE DWARF PROGENITORS , 2016, 1602.06356.

[26]  Wei Zheng,et al.  Late-time spectroscopy of Type Iax Supernovae , 2016, 1601.05955.

[27]  M. Kasliwal,et al.  AN EXCESS OF MID-INFRARED EMISSION FROM THE TYPE Iax SN 2014dt , 2015, 1510.08070.

[28]  Michael P. Rupen,et al.  A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY , 2015, 1510.07662.

[29]  J. Silverman,et al.  The early phases of the Type Iax supernova SN 2011ay , 2015, 1508.00602.

[30]  C. Abate,et al.  PRE-EXPLOSION COMPANION STARS IN TYPE Iax SUPERNOVAE , 2015, 1506.04903.

[31]  Xiaofeng Wang,et al.  Optical observations of an SN 2002cx-like peculiar supernova SN 2013en in UGC 11369 , 2015, 1506.02845.

[32]  N. Gehrels,et al.  A strong ultraviolet pulse from a newborn type Ia supernova , 2015, Nature.

[33]  T. Morokuma,et al.  OISTER OPTICAL AND NEAR-INFRARED OBSERVATIONS OF TYPE Iax SUPERNOVA 2012Z , 2015, 1505.01593.

[34]  R. Fisher,et al.  SINGLE-DEGENERATE TYPE Ia SUPERNOVAE ARE PREFERENTIALLY OVERLUMINOUS , 2015, 1504.00014.

[35]  W. Hillebrandt,et al.  Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha , 2015, 1503.04292.

[36]  T. Moriya,et al.  Constraints on single-degenerate Chandrasekhar mass progenitors of Type Iax supernovae , 2014, 1412.0820.

[37]  Adam A. Miller,et al.  ON THE PROGENITOR SYSTEM OF THE TYPE Iax SUPERNOVA 2014dt IN M61 , 2014, 1412.1088.

[38]  Xiaofeng Wang,et al.  Spectroscopic Classification of PSN J23560655+2922423 as a Peculiar Type Ia Supernova , 2014 .

[39]  M. Childress,et al.  Classification of two supernovae with WiFeS , 2014 .

[40]  Z. Han,et al.  THE HYBRID CONe WD + He STAR SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE , 2014, 1409.7759.

[41]  F. Förster,et al.  DEFINING PHOTOMETRIC PECULIAR TYPE Ia SUPERNOVAE , 2014, 1409.4811.

[42]  L. R. Yungelson,et al.  He-accreting white dwarfs: accretion regimes and final outcomes , 2014, 1409.3589.

[43]  Gang Zhao,et al.  Double-detonation model of type Ia supernovae with a variable helium layer ignition mass , 2014 .

[44]  S. Jha,et al.  POSSIBLE DETECTION OF THE STELLAR DONOR OR REMNANT FOR THE TYPE Iax SUPERNOVA 2008ha , 2014, 1408.1091.

[45]  M. Phillips,et al.  Comprehensive observations of the bright and energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion ∗ , 2014, 1408.1093.

[46]  A. Riess,et al.  A luminous, blue progenitor system for the type Iax supernova 2012Z , 2014, Nature.

[47]  J. Truran,et al.  Hybrid C–O–Ne white dwarfs as progenitors of Type Ia supernovae: dependence on Urca process and mixing assumptions , 2014, 1407.0248.

[48]  P. Podsiadlowski,et al.  THE BIRTH RATE OF SNe Ia FROM HYBRID CONe WHITE DWARFS , 2014, 1406.4208.

[49]  Peter E. Nugent,et al.  SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS , 2014, 1405.7409.

[50]  R. Kirshner,et al.  NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS ENVIRONMENT , 2014, 1405.1488.

[51]  Ori D. Fox,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM OF THE TYPE Ia SUPERNOVA 2014J FROM PRE-EXPLOSION HUBBLE SPACE TELESCOPE IMAGING , 2014, 1403.4250.

[52]  R. G. Izzard,et al.  Theoretical uncertainties of the Type Ia supernova rate , 2014, 1401.2895.

[53]  J. P. Moore,et al.  Optical and near-IR observations of the faint and fast 2008ha-like supernova 2010ae , 2013, 1311.4525.

[54]  R. Kirshner,et al.  PSN J01462790-5840238 is a probable SN Iax, Classification by FIRE NIR spectrum , 2013 .

[55]  M. Fink,et al.  PREDICTING THE AMOUNT OF HYDROGEN STRIPPED BY THE SN EXPLOSION FOR SN 2002cx-LIKE SNe Ia , 2013, 1310.3884.

[56]  S. Justham,et al.  Producing Type Iax supernovae from a specific class of helium-ignited WD explosions , 2013, 1310.2297.

[57]  B. Paxton,et al.  The dependence of the evolution of SN type Ia progenitors on the C burning rate uncertainty and parameters of convective boundary mixing , 2013, 1310.1898.

[58]  Rollin C. Thomas,et al.  HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF THE TYPE Iax SUPERNOVAE SN 2005hk AND SN 2008A , 2013, 1309.4457.

[59]  Jose H. Groh,et al.  Fundamental properties of core-collapse Supernova and GRB progenitors: predicting the look of massive stars before death , 2013, 1308.4681.

[60]  W. Hillebrandt,et al.  Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for type ia supernovae , 2013, 1308.3257.

[61]  Richard Kessler,et al.  THREE-DIMENSIONAL SIMULATIONS OF PURE DEFLAGRATION MODELS FOR THERMONUCLEAR SUPERNOVAE , 2013, 1307.8221.

[62]  J. Lyman,et al.  Environment-derived constraints on the progenitors of low-luminosity Type I supernovae , 2013, 1306.2474.

[63]  Wei Zheng,et al.  SN 2013dh in NGC 5936 is probably a type Iax supernova , 2013 .

[64]  J. Truran,et al.  THE C-FLAME QUENCHING BY CONVECTIVE BOUNDARY MIXING IN SUPER-AGB STARS AND THE FORMATION OF HYBRID C/O/Ne WHITE DWARFS AND SN PROGENITORS , 2013, 1305.2649.

[65]  S. Woosley,et al.  CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS , 2013, 1305.2433.

[66]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[67]  W. Hillebrandt,et al.  3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae , 2012, 1210.5243.

[68]  C. Tao,et al.  Spectroscopic classification of the peculiar Type Ia SN LSQ12fhs by the Nearby Supernova Factory II , 2012 .

[69]  B. Metzger,et al.  NUCLEAR DOMINATED ACCRETION FLOWS IN TWO DIMENSIONS. I. TORUS EVOLUTION WITH PARAMETRIC MICROPHYSICS , 2012, 1209.2712.

[70]  R. Fisher,et al.  FAILED-DETONATION SUPERNOVAE: SUBLUMINOUS LOW-VELOCITY Ia SUPERNOVAE AND THEIR KICKED REMNANT WHITE DWARFS WITH IRON-RICH CORES , 2012, 1208.5069.

[71]  C. Kochanek,et al.  TYPE Ia SINGLE DEGENERATE SURVIVORS MUST BE OVERLUMINOUS , 2012, 1205.5028.

[72]  R. Kirshner,et al.  THE LOW-VELOCITY, RAPIDLY FADING TYPE Ia SUPERNOVA 2002es , 2012, 1202.3140.

[73]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[74]  Nathaniel R. Butler,et al.  Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.

[75]  S. Corr Growing the evidence , 2011 .

[76]  A. S. Almgren,et al.  HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT , 2011, 1111.3086.

[77]  Michael Zingale,et al.  THE CONVECTIVE PHASE PRECEDING TYPE Ia SUPERNOVAE , 2011 .

[78]  B. Metzger Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole , 2011, 1105.6096.

[79]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[80]  Juan C. Meza,et al.  SYNAPPS: Data-Driven Analysis for Supernova Spectroscopy , 2011 .

[81]  R. Nichol,et al.  NTT and NOT spectroscopy of SDSS-II supernovae , 2010, 1011.5869.

[82]  Chris L. Fryer,et al.  Delay times and rates for type Ia supernovae and thermonuclear explosions from double-detonation sub-Chandrasekhar mass models , 2010, 1011.1407.

[83]  S. Smartt,et al.  DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku , 2010, 1008.4353.

[84]  J. Maund,et al.  A SPECTROPOLARIMETRIC VIEW ON THE NATURE OF THE PECULIAR TYPE I SN 2005hk , 2010, 1008.3985.

[85]  M. Phillips,et al.  ON THE PROGENITOR AND SUPERNOVA OF THE SN 2002cx-LIKE SUPERNOVA 2008ge, , 2010, 1008.0635.

[86]  M. Phillips,et al.  NEAR-ULTRAVIOLET PROPERTIES OF A LARGE SAMPLE OF TYPE Ia SUPERNOVAE AS OBSERVED WITH THE Swift UVOT , 2010, 1007.5279.

[87]  Wen-Cong Chen,et al.  Helium-star evolutionary channel to super-Chandrasekhar mass type Ia supernovae , 2010, 1007.4751.

[88]  J. Frieman,et al.  THE SUBLUMINOUS SUPERNOVA 2007qd: A MISSING LINK IN A FAMILY OF LOW-LUMINOSITY TYPE Ia SUPERNOVAE , 2010, 1007.2850.

[89]  P. Mazzali,et al.  FALLBACK SUPERNOVAE: A POSSIBLE ORIGIN OF PECULIAR SUPERNOVAE WITH EXTREMELY LOW EXPLOSION ENERGIES , 2010, 1006.5336.

[90]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[91]  L. Monard Supernova 2010el in NGC 1566 , 2010 .

[92]  W. M. Wood-Vasey,et al.  EARLY- AND LATE-TIME OBSERVATIONS OF SN 2008ha: ADDITIONAL CONSTRAINTS FOR THE PROGENITOR AND EXPLOSION , 2009, 0912.0732.

[93]  Wuming Yang,et al.  A COMPREHENSIVE PROGENITOR MODEL FOR SNe Ia , 2009, 0910.4992.

[94]  T. R. Marsh,et al.  THE EXPANDING BIPOLAR SHELL OF THE HELIUM NOVA V445 PUPPIS , 2009, 0910.1069.

[95]  M. L. Pumo,et al.  EC-SNe FROM SUPER-ASYMPTOTIC GIANT BRANCH PROGENITORS: THEORETICAL MODELS VERSUS OBSERVATIONS , 2009, 0910.0640.

[96]  Zhanwen Han,et al.  EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES , 2009, 0906.4148.

[97]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[98]  Chris L. Fryer,et al.  RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE , 2009, 0904.3108.

[99]  W. M. Wood-Vasey,et al.  SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA , 2009, 0902.2794.

[100]  Zhanwen Han,et al.  The helium star donor channel for the progenitors of Type Ia supernovae , 2009, 1003.4050.

[101]  A. Pastorello,et al.  A low-energy core-collapse supernova without a hydrogen envelope , 2009, Nature.

[102]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.

[103]  Mark Sullivan,et al.  The Progenitors of Type Ia Supernovae , 2008, 0806.3729.

[104]  S. Kiyota,et al.  Helium Nova on a Very Massive White Dwarf: A Revised Light-Curve Model of V445 Puppis (2000) , 2008, 0805.2540.

[105]  S. Blondin,et al.  Supernova 2008ae in IC 577 , 2008 .

[106]  P. Mazzali,et al.  The Evolution of the Peculiar Type Ia Supernova SN 2005hk over 400 Days , 2007, 0710.3636.

[107]  L. Antonelli,et al.  The multicolored landscape of compact objects and their explosive Origins : Cefalù 2006 : Cefalù, Sicily, 11-18 and 19-24 June 2006 , 2007 .

[108]  Paolo A. Mazzali,et al.  A Three-Dimensional Deflagration Model for Type Ia Supernovae Compared with Observations , 2007, 0707.1024.

[109]  Caltech,et al.  Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario , 2007, 0706.1094.

[110]  Wen-Cong Chen,et al.  Evolving to Type Ia Supernovae with Long Delay Times , 2007, astro-ph/0702218.

[111]  K. Postnov,et al.  The Evolution of Compact Binary Star Systems , 2006, Living reviews in relativity.

[112]  J. Sollerman,et al.  The Peculiar Type Ia Supernova 2005hk , 2006, astro-ph/0611354.

[113]  S. E. Persson,et al.  The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations? , 2006, astro-ph/0611295.

[114]  D. Kasen Secondary Maximum in the Near-Infrared Light Curves of Type Ia Supernovae , 2006, astro-ph/0606449.

[115]  S. Jha,et al.  Spectropolarimetry of the Peculiar Type Ia Supernova 2005hk , 2006, astro-ph/0603083.

[116]  S. Jha,et al.  Late-Time Spectroscopy of SN 2002cx: The Prototype of a New Subclass of Type Ia Supernovae , 2006, astro-ph/0602250.

[117]  G. Smadja,et al.  Type Determination for SN 2005bt , 2005 .

[118]  E. Oran,et al.  Three-dimensional Delayed-Detonation Model of Type Ia Supernovae , 2004, astro-ph/0409598.

[119]  R. Thomas,et al.  Reading the Spectra of the Most Peculiar Type Ia Supernova 2002cx , 2004, astro-ph/0408130.

[120]  E. Oran,et al.  Deflagrations and detonations in thermonuclear supernovae. , 2004, Physical review letters.

[121]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[122]  A. Chtchelkanova,et al.  Supernovae : Simulations of the Deflagration Stage and Their Implications , 2018 .

[123]  Alexei V. Filippenko,et al.  A High Intrinsic Peculiarity Rate among Type Ia Supernovae , 2000, astro-ph/0006292.

[124]  K. Nomoto,et al.  A New Evolutionary Path to Type Ia Supernovae: A Helium-rich Supersoft X-Ray Source Channel , 1999, astro-ph/9902303.

[125]  P. Nugent Evidence for a Spectroscopic Sequence Among SNe IA , 1995 .

[126]  P. Nugent,et al.  Evidence for a Spectroscopic Sequence among Type Ia Supernovae , 1995, astro-ph/9510004.

[127]  J. Wheeler,et al.  Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation , 1995 .

[128]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[129]  A. M. Khokhlov,et al.  Delayed detonation model for type IA supernovae , 1991 .

[130]  K. Nomoto Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores. , 1984 .

[131]  A. Chieffi,et al.  Low- and Intermediate-Mass Stars , 2018 .

[132]  P. Mazzali,et al.  Light Curves of Type I Supernovae , 2017 .

[133]  P. Murdin,et al.  Handbook of Supernovae , 2017 .

[134]  S. Sim Spectra of Supernovae During the Photospheric Phase , 2017 .

[135]  P. Hoeflich Explosion Physics of Thermonuclear Supernovae and Their Signatures , 2017 .

[136]  D. Kasen Unusual Supernovae and Alternative Power Sources , 2017 .

[137]  B. Gibson,et al.  Spectroscopic Classifications of Optical Transients with SOAR , 2016 .

[138]  S. Starrfield Evolution of Accreting White Dwarfs to the Thermonuclear Runaway , 2016 .

[139]  J. P. Moore,et al.  Optical and Near-IR Observations of the Faint and Fast 2008 ha-like Supernova 2010 ae ? , 2013 .

[140]  W.-D. Li,et al.  Supernova 2007J in UGC 1778 , 2007 .

[141]  E. K. Grasberg,et al.  The Light Curves of Supernovae. , 1969 .