Adaptive vector sliding mode fault-tolerant control of the uncertain Stewart platform based on position measurements only

This paper investigates the trajectory tracking of a Stewart platform, which is a typical multi-input multi-output nonlinear system, with unmodeled dynamics, parameter uncertainties, friction, and unpredictable actuator faults. An adaptive vector sliding mode fault-tolerant control law is derived to ensure the system is insensitive to uncertainties and drive the state variable errors of the closed-loop system to converge to the origin. Moreover, novel adaptive laws are proposed to update the upper boundary of uncertainty according to the actual system state, which greatly reduces the chattering of sliding mode control. Furthermore, velocity signals are estimated by introducing a simple nonlinear observer, resulting in the proposed controller requiring position measurements only. Finally, numerical simulations illustrate the effectiveness of the proposed control scheme.

[1]  Youmin Zhang,et al.  Bibliographical review on reconfigurable fault-tolerant control systems , 2003, Annu. Rev. Control..

[2]  D. S. Negash,et al.  Integral sliding mode controller for trajectory tracking control of Stewart platform manipulator , 2010, 2010 5th International Conference on Industrial and Information Systems.

[3]  Gao Feng,et al.  Continuous Finite Time Control for Stewart Platform with Terminal Sliding Mode , 2006, 2007 Chinese Control Conference.

[4]  Chunhong Zheng,et al.  Genetic design of kinematically optimal fine tuning Stewart platform for large spherical radio telescope , 2001 .

[5]  Evangelos Papadopoulos,et al.  Impedance Model-based Control for an Electrohydraulic Stewart Platform , 2009, Eur. J. Control.

[6]  Hamid D. Taghirad,et al.  An Analytic-Iterative Redundancy Resolution Scheme for Cable-Driven Redundant Parallel Manipulators , 2011, IEEE Transactions on Robotics.

[7]  Pratik J. Parikh,et al.  A hybrid strategy to solve the forward kinematics problem in parallel manipulators , 2005, IEEE Transactions on Robotics.

[8]  Yixin Chen,et al.  Fault tolerance of parallel manipulators using task space and kinematic redundancy , 2006, IEEE Transactions on Robotics.

[9]  Charles C. Nguyen,et al.  Adaptive control of a stewart platform-based manipulator , 1993, J. Field Robotics.

[10]  Weibing Gao,et al.  Variable structure control of nonlinear systems: a new approach , 1993, IEEE Trans. Ind. Electron..

[11]  Leonid M. Fridman,et al.  Output integral sliding mode control to stabilize position of a Stewart platform , 2012, J. Frankl. Inst..

[12]  John E. McInroy,et al.  Orthogonal gough-stewart platforms with optimal fault tolerant manipulability , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[13]  X. Zeng,et al.  Adaptive Task-Space Tracking Control of Robots Without Task-Space- and Joint-Space-Velocity Measurements , 2010, IEEE Transactions on Robotics.

[14]  Jun Wu,et al.  Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy , 2009 .

[15]  Rosario Miceli,et al.  Back EMF Sensorless-Control Algorithm for High-Dynamic Performance PMSM , 2010, IEEE Transactions on Industrial Electronics.

[16]  Bhaskar Dasgupta,et al.  The Stewart platform manipulator: a review , 2000 .

[17]  Junwei Han,et al.  Dynamic modeling and computational efficiency analysis for a spatial 6-DOF parallel motion system , 2012 .

[18]  Evangelos Papadopoulos,et al.  Model-based control of a 6-dof electrohydraulic Stewart–Gough platform , 2008 .

[19]  B. Bandyopadhyay,et al.  Stabilization of Stewart platform using Higher Order Sliding Mode control , 2012, 2012 7th International Conference on Electrical and Computer Engineering.

[20]  John E. McInroy,et al.  Orthogonal Gough-Stewart platforms for micromanipulation , 2003, IEEE Trans. Robotics Autom..

[21]  Henk Nijmeijer,et al.  Global regulation of robots using only position measurements , 1993 .

[22]  Masayoshi Tomizuka,et al.  A state-dependent boundary layer design for sliding mode control , 2002, IEEE Trans. Autom. Control..

[23]  Li-Chen Fu,et al.  Second order sliding mode control on task-space of a 6-DOF Stewart platform , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[24]  Dong Sun,et al.  A simple nonlinear velocity estimator for high-performance motion control , 2005, IEEE Transactions on Industrial Electronics.

[25]  Rong-Jong Wai,et al.  Fuzzy Sliding-Mode Control Using Adaptive Tuning Technique , 2007, IEEE Transactions on Industrial Electronics.

[26]  Lu Ren,et al.  Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators , 2006, IEEE Transactions on Robotics.

[27]  Carlo Innocenti,et al.  Direct position analysis of the Stewart platform mechanism , 1990 .

[28]  Lu Ren,et al.  Experimental Comparison of Control Approaches on Trajectory Tracking Control of a 3-DOF Parallel Robot , 2007, IEEE Transactions on Control Systems Technology.

[29]  Lu Ren,et al.  Synchronous Tracking Control of Parallel Manipulators Using Cross-coupling Approach , 2006, Int. J. Robotics Res..

[30]  R. D. Lorenz,et al.  Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds , 1998 .

[31]  Min-Jie Liu,et al.  Dynamics analysis of the Gough-Stewart platform manipulator , 2000, IEEE Trans. Robotics Autom..

[32]  Ren Gexue,et al.  Feedback control of a cable-driven gough-stewart platform , 2006 .

[33]  M. Bergamasco,et al.  Dynamics of parallel manipulators by means of screw theory , 2003 .

[34]  J. Han,et al.  NONLINEAR TRACKING-DIFFERENTIATOR , 1994 .

[35]  Leonid M. Fridman,et al.  Position stabilization of a Stewart platform: High-order sliding mode observers based approach , 2011, IEEE Conference on Decision and Control and European Control Conference.

[36]  Xiao-Shan Gao,et al.  Generalized Stewart-Gough platforms and their direct kinematics , 2005, IEEE Transactions on Robotics.

[37]  Yuxin Su,et al.  Disturbance-rejection high-precision motion control of a Stewart platform , 2004, IEEE Transactions on Control Systems Technology.

[38]  Hong Gu,et al.  Forward Kinematics Analysis of a Six-Degree-of-Freedom Stewart Platform Based on Independent Component Analysis and Nelder–Mead Algorithm , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[39]  Qinglei Hu,et al.  Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits , 2009 .

[40]  Mehmet Önder Efe,et al.  Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  Marco A. Arteaga Robot control and parameter estimation with only joint position measurements , 2003, Autom..

[42]  Peter C. Müller,et al.  A simple improved velocity estimation for low-speed regions based on position measurements only , 2006, IEEE Transactions on Control Systems Technology.

[43]  Tao Zhang,et al.  Dynamic modeling of a 6-degree-of-freedom Stewart platform driven by a permanent magnet synchronous motor , 2009, Journal of Zhejiang University SCIENCE C.

[44]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[45]  Y. Su,et al.  Nonlinear PID control of a six-DOF parallel manipulator , 2004 .

[46]  Qitao Huang,et al.  Decoupling control for spatial six-degree-of-freedom electro-hydraulic parallel robot , 2012 .

[47]  Shuzhi Sam Ge,et al.  Adaptive neural network control of robot manipulators in task space , 1997, IEEE Trans. Ind. Electron..

[48]  Peter C. Müller,et al.  Global Asymptotic Saturated PID Control for Robot Manipulators , 2010, IEEE Transactions on Control Systems Technology.

[49]  Yuanqing Xia,et al.  Adaptive Sliding Mode Control for Attitude Stabilization With Actuator Saturation , 2011, IEEE Transactions on Industrial Electronics.

[50]  Hongtao Wu,et al.  A closed-form forward kinematics solution for the 6-6p Stewart platform , 2001, IEEE Trans. Robotics Autom..

[51]  Leonid M. Fridman,et al.  Position stabilization of a Stewart platform: High-order sliding mode observers based approach , 2012, J. Frankl. Inst..

[52]  Se-Han Lee,et al.  Improved velocity estimation for low-speed and transient regimes using low-resolution encoders , 2004, IEEE/ASME Transactions on Mechatronics.

[53]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[54]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[55]  M. Husty An algorithm for solving the direct kinematics of general Stewart-Gough platforms , 1996 .

[56]  Jean-Pierre Merlet,et al.  Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis , 2004, Int. J. Robotics Res..

[57]  C.S. Ukidve,et al.  Using Redundancy to Optimize Manipulability of Stewart Platforms , 2008, IEEE/ASME Transactions on Mechatronics.

[58]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[59]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[60]  John E. McInroy,et al.  Finding symmetric orthogonal Gough-Stewart platforms , 2006, IEEE Transactions on Robotics.

[61]  Qitao Huang,et al.  PD control with gravity compensation for hydraulic 6-DOF parallel manipulator☆ , 2010 .

[62]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[63]  Li-Chen Fu,et al.  Output Feedback Sliding Mode Control for a Stewart Platform With a Nonlinear Observer-Based Forward Kinematics Solution , 2013, IEEE Transactions on Control Systems Technology.

[64]  Moshe Shoham,et al.  A Novel Six Degrees-of-Freedom Parallel Robot for MEMS Fabrication , 2007, IEEE Transactions on Robotics.