Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin

[1]  J. O'm. Bockris,et al.  Textbook of electrochemistry , 1951 .

[2]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[3]  C. N. Reilley,et al.  Nuclear Magnetic Resonance Studies of Protonation of Some Polyaminocarboxylate Compounds Containing Asymmetric Carbon Atoms. , 1964 .

[4]  C. N. Reilley,et al.  Nuclear Magnetic Resonance Studies of Protonation of Polyamine and Aminocarboxylate Compounds in Aqueous Solution. , 1964 .

[5]  C. Tanford,et al.  Interpretation of protein titration curves. Application to lysozyme. , 1972, Biochemistry.

[6]  R. Henderson The structure of the purple membrane from Halobacterium hallobium: analysis of the X-ray diffraction pattern. , 1975, Journal of molecular biology.

[7]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[8]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[9]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[10]  A. Lewis,et al.  Experimental evidence for secondary protein-chromophore interactions at the Schiff base linkage in bacteriorhodopsin: Molecular mechanism for proton pumping. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[11]  N. Dencher,et al.  Bacteriorhodopsin monomers pump protons , 1979, FEBS letters.

[12]  B. Honig,et al.  Photoisomerization, energy storage, and charge separation: a model for light energy transduction in visual pigments and bacteriorhodopsin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[13]  B. Honig,et al.  On the mechanism of hydrogen-deuterium exchange in bacteriorhodopsin. , 1981, Biophysical journal.

[14]  R. Callender,et al.  Acid-base equilibrium of the Schiff base in bacteriorhodopsin. , 1982, Biochemistry.

[15]  W. Stoeckenius,et al.  Bacteriorhodopsin and related pigments of halobacteria. , 1982, Annual review of biochemistry.

[16]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[17]  B. Honig,et al.  Stability of "salt bridges" in membrane proteins. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Tavan,et al.  The effect of protonation and electrical interactions on the stereochemistry of retinal schiff bases. , 1985, Biophysical journal.

[19]  B Hess,et al.  Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: an investigation by static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane. , 1985, Biochemistry.

[20]  B. Honig,et al.  Calculation of electrostatic potentials in an enzyme active site , 1987, Nature.

[21]  Alan R. Fersht,et al.  Prediction of electrostatic effects of engineering of protein charges , 1987, Nature.

[22]  B. Hess,et al.  Only water‐exposed carboxyl groups are protonated during the transition to the cation‐free blue bacteriorhodopsin , 1987 .

[23]  M. Karplus,et al.  Electrostatic effects of charge perturbations introduced by metal oxidation in proteins. A theoretical analysis. , 1988, Journal of molecular biology.

[24]  H. Khorana,et al.  Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. , 1988, Biochemistry.

[25]  M Karplus,et al.  Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison , 1988, Proteins.

[26]  H. Khorana,et al.  Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[27]  B. Hess,et al.  Role of aspartate-96 in proton translocation by bacteriorhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Griffin,et al.  Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. , 1989, Biochemistry.

[29]  E. Bamberg,et al.  Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. , 1989, The EMBO journal.

[30]  D. Oesterhelt,et al.  Two pumps, one principle: light-driven ion transport in halobacteria. , 1989, Trends in biochemical sciences.

[31]  M. Karplus,et al.  pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. , 1990, Biochemistry.

[32]  B. Hess,et al.  Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Khorana,et al.  Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[35]  H. Khorana,et al.  Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. O. Smith,et al.  Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. , 1990, Biochemistry.

[37]  M. Karplus,et al.  Multiple-site titration curves of proteins: an analysis of exact and approximate methods for their calculation , 1991 .

[38]  P. Beroza,et al.  Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. , 1991, Proceedings of the National Academy of Sciences of the United States of America.