Hypervalent Bismuthides La3MBi5 (M = Ti, Zr, Hf) and Related Antimonides: Absence of Superconductivity.

We successfully synthesized the ternary bismuthides La3MBi5 (M = Ti, Zr, Hf). These compounds crystallize in the hexagonal Hf5Sn3Cu-anti type structure (space group: P63/mcm) consisting of face-sharing MBi6 octahedral chains and hypervalent Bi linear chains, both separated by La atoms. Magnetic susceptibility and electrical resistivity measurements revealed that all of the compounds, including the solid solution La3Ti(Bi1-xSbx)5, exhibit a Pauli paramagnetic behavior without any trace of superconductivity down to 1.85 K, as opposed to a recently reported 4 K superconductivity in La3TiSb5. The absence of superconductivity is supported by first-principles band calculations of La3TiBi5 and La3TiSb5 that demonstrate similar electronic structures with three-dimensional Fermi surfaces.

[1]  Yuichi Yamasaki,et al.  Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions , 2016, Science Advances.

[2]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[3]  M. Kanatzidis,et al.  Superconductivity and strong intrinsic defects in LaPd1-xBi 2 , 2013 .

[4]  A. Mar,et al.  Ternary Rare-Earth Manganese Bismuthides: Structures and Physical Properties of RE3MnBi5 (RE = La−Nd) and Sm2Mn3Bi6 , 2008 .

[5]  A. Mar,et al.  Anisotropic transport and magnetic properties of ternary uranium antimonides U3ScSb5 and U3TiSb5 , 2006 .

[6]  A. Mar,et al.  Structure and physical properties of ternary uranium transition-metal antimonides U3MSb5 (M = Zr, Hf, Nb) , 2006 .

[7]  Zhong‐Ming Sun,et al.  Synthesis and crystal structures of La3MgBi5 and LaLiBi2 , 2006 .

[8]  Zhong‐Ming Sun,et al.  Synthesis and crystal structure of EuBi2 , 2004 .

[9]  S. Bobev,et al.  Instabilities in the Linear Sb Atom Chain of the New Binary Antimonide Ti11-xSb8-y , 2003 .

[10]  K. Lee,et al.  Charge-density-wave orderings in LaAgSb2: An x-ray scattering study , 2003 .

[11]  A. Mar,et al.  Physical Properties and Bonding in RE3TiSb5 (RE = La, Ce, Pr, Nd, Sm) , 2002 .

[12]  H. Kleinke,et al.  Zr(11)Sb(18): a new binary antimonide exhibiting an unusual Sb atom network with nonclassical Sb-Sb bonding. , 2002, Inorganic Chemistry.

[13]  G. Papoian,et al.  Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl-Klemm Concept to Nonclassical Electron-Rich Networks. , 2000, Angewandte Chemie.

[14]  H. Kleinke Zr1-xTixSb: A Novel Antimonide on the Quasibinary Section ZrSb−TiSb with a Complex Crystal Structure Exhibiting Linear Sb Chains and Fragments of the TiSb Structure , 2000 .

[15]  H. Kleinke From molecular Sb units to infinite chains, layers, and networks: Sb–Sb interactions in metal-rich antimonides , 2000 .

[16]  K. Gschneidner,et al.  Crystal structure and magnetic properties of the new ternary compound Ce3MnBi5 , 1999 .

[17]  H. Kleinke Metal-rich polyantimonides: internal competition between M–M and Sb–Sb and heteroatomic M–Sb interactions in (Zr,V)13Sb10 and (Zr,V)11Sb8 (M = Zr,V) , 1999 .

[18]  Michael J. Ferguson,et al.  Crystal structures of La3ZrSb5, La3HfSb5, and LaCrSb3· Structural relationships in ternary rare-earth antimonides , 1997 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  A. Mar,et al.  New Ternary Rare-Earth Transition-Metal Antimonides RE3MSb5 (RE = La, Ce, Pr, Nd, Sm; M = Ti, Zr, Hf, Nb) , 1995 .

[21]  W. Jeitschko,et al.  U3TiSb5, U3VSb5, U3CrSb5, and U3MnSb5 with "Anti"-Hf5Sn3Cu Type Structure , 1994 .

[22]  J. Corbett,et al.  Chemistry in the polar intermetallic host zirconium antimonide, Zr5Sb3. Fifteen interstitial compounds , 1990 .

[23]  H. Hayakawa,et al.  The lanthanum-bismuth alloy system , 1977 .

[24]  B. Eisenmann,et al.  Darstellung und Kristallstruktur von CaSb2 , 1976 .

[25]  F. Hulliger TiAs2-type Phases , 1964, Nature.

[26]  D. C. Hopkins,et al.  Critical Fields of Superconducting Tin, Indium, and Tantalum , 1960 .

[27]  H. Nowotny,et al.  Untersuchung reibungspyrophorer Ti-Legierungen; Tu2Bi, ein neuer Strukturtyp , 1958 .