A new type of weighted compact nonlinear scheme with minimum dispersion and adaptive dissipation for compressible flows

[1]  Panagiotis Tsoutsanis,et al.  A relaxed a posteriori MOOD algorithm for multicomponent compressible flows using high-order finite-volume methods on unstructured meshes , 2023, Appl. Math. Comput..

[2]  Panagiotis Tsoutsanis,et al.  CWENO Finite-Volume Interface Capturing Schemes for Multicomponent Flows Using Unstructured Meshes , 2021, Journal of Scientific Computing.

[3]  Lin Fu,et al.  Very-high-order TENO schemes with adaptive accuracy order and adaptive dissipation control , 2021, Computer Methods in Applied Mechanics and Engineering.

[4]  Michael Dumbser,et al.  Arbitrary high order central non-oscillatory schemes on mixed-element unstructured meshes , 2021, Computers & Fluids.

[5]  N. Sandham,et al.  Assessment of Low-Dissipative Shock-Capturing Schemes for the Compressible Taylor–Green Vortex , 2021 .

[6]  Ignasi Colominas,et al.  A reduced-dissipation WENO scheme with automatic dissipation adjustment , 2021, J. Comput. Phys..

[7]  Sergio Pirozzoli,et al.  On shock sensors for hybrid compact/WENO schemes , 2020 .

[8]  W. Xie,et al.  An accurate and robust HLLC‐type Riemann solver for the compressible Euler system at various Mach numbers , 2018, International Journal for Numerical Methods in Fluids.

[9]  Fei Liao,et al.  Optimized low-dissipation and low-dispersion schemes for compressible flows , 2018, J. Comput. Phys..

[10]  Luis Ramírez,et al.  An a posteriori, efficient, high-spectral resolution hybrid finite-difference method for compressible flows , 2018, Computer Methods in Applied Mechanics and Engineering.

[11]  Nikolaus A. Adams,et al.  Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws , 2017, J. Comput. Phys..

[12]  T. Si,et al.  On the interaction of a planar shock with a three-dimensional light gas cylinder , 2017, Journal of Fluid Mechanics.

[13]  Sanjiva K. Lele,et al.  High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows , 2017, J. Comput. Phys..

[14]  G. Russo,et al.  Central Weighted ENO Schemes for Hyperbolic Conservation Laws on Fixed and Moving Unstructured Meshes , 2016, SIAM J. Sci. Comput..

[15]  Gabriella Puppo,et al.  CWENO: Uniformly accurate reconstructions for balance laws , 2016, Math. Comput..

[16]  Claus-Dieter Munz,et al.  Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method , 2016, J. Comput. Phys..

[17]  Xinliang Li,et al.  Resolution-optimised nonlinear scheme for secondary derivatives , 2016 .

[18]  Xiaogang Deng,et al.  A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law , 2015 .

[19]  Matteo Semplice,et al.  On the Accuracy of WENO and CWENO Reconstructions of Third Order on Nonuniform Meshes , 2015, Journal of Scientific Computing.

[20]  Chi-Wang Shu,et al.  A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes , 2015, J. Comput. Phys..

[21]  Lei Luo,et al.  A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique , 2014, J. Comput. Phys..

[22]  M. Semplice,et al.  Adaptive Mesh Refinement for Hyperbolic Systems Based on Third-Order Compact WENO Reconstruction , 2014, Journal of Scientific Computing.

[23]  Xinliang Li,et al.  Optimized sixth‐order monotonicity‐preserving scheme by nonlinear spectral analysis , 2013 .

[24]  Taku Nonomura,et al.  Robust explicit formulation of weighted compact nonlinear scheme , 2013 .

[25]  Yu-Xin Ren,et al.  A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence , 2011, J. Comput. Phys..

[26]  R. Bonazza,et al.  Shock-Bubble Interactions , 2011 .

[27]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[28]  Taku Nonomura,et al.  Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids , 2010 .

[29]  Santhosh K. Shankar,et al.  Numerical Simulation of Multicomponent Shock Accelerated Flows and Mixing using Localized Artificial Diffusivity Method , 2010 .

[30]  Taku Nonomura,et al.  Effects of difference scheme type in high-order weighted compact nonlinear schemes , 2009, J. Comput. Phys..

[31]  Soshi Kawai,et al.  Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes , 2008, J. Comput. Phys..

[32]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[33]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[34]  Sergio Pirozzoli,et al.  On the spectral properties of shock-capturing schemes , 2006, J. Comput. Phys..

[35]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[36]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[37]  Mao Meiliang,et al.  Investigation on Weighted Compact Fifth-order Nonlinear Scheme and Applications to Complex Flow , 2005 .

[38]  D. Drikakis,et al.  Numerical experiments using high-resolution schemes for unsteady, inviscid, compressible flows , 2004 .

[39]  X. L. Niu,et al.  A new way for constructing high accuracy shock-capturing generalized compact difference schemes , 2003 .

[40]  Shinji Tamano,et al.  A DNS algorithm using B-spline collocation method for compressible turbulent channel flow , 2003 .

[41]  Yong-Tao Zhang,et al.  Resolution of high order WENO schemes for complicated flow structures , 2003 .

[42]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[43]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[44]  Xiaogang Deng,et al.  Developing high-order weighted compact nonlinear schemes , 2000 .

[45]  F. Nicoud,et al.  Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows , 1999 .

[46]  Patrick Jenny,et al.  Correction of Conservative Euler Solvers for Gas Mixtures , 1997 .

[47]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[48]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[49]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[50]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[51]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[52]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[53]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[54]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[55]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[56]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[57]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[58]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[59]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[60]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .