Numerical study of potential heat flux mitigation effects in the TCV snowflake divertor

We report on EMC3-Eirene simulations of the plasma and neutral particle transport the TCV boundary layer of a series of snowflake (SF) equilibria characterized by the normalized poloidal flux coordinate rho(x2) of the secondary X-point x(2). We refer to a snowflake plus (SF+) for rho(x2) 1 and a single-null (SN) for vertical bar rho(x2)-1 vertical bar >> 0. Four effects are identified that have the potential to mitigate the heat flux density at the outer strike point in a LFS SF- where x(2) is located on the low field side of the primary X-point x(1): (1) a scrape-off layer heat flux splitting, (2) an impurity radiation cloud forming at x(2) (3) the increased connection length to the outer target and (4) increased transport between x(1) and x(2). The LFS SF- is thus expected to tolerate a larger power flux P-sep over the separatrix than a comparable SN configuration.

[1]  J. Schweinzer,et al.  Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO , 2013 .

[2]  A. Carlson,et al.  Recent results from divertor operation in ASDEX Upgrade , 1994 .

[3]  S. Coda,et al.  Optimization of experimental snowflake configurations on TCV , 2014 .

[4]  D. Reiter,et al.  The EIRENE and B2-EIRENE Codes , 2005 .

[5]  D. Coster,et al.  Experimental studies and modeling of complete H-mode divertor detachment in ASDEX Upgrade , 2015 .

[6]  A. Loarte,et al.  Effect of the magnetic flux geometry of a poloidal divertor on the profiles and parameters at the target , 1992 .

[7]  Joseph V. Minervini,et al.  ADX: a high field, high power density, advanced divertor and RF tokamak , 2015 .

[8]  T. Eich,et al.  Inter-ELM power decay length for JET and ASDEX upgrade: measurement and comparison with heuristic drift-based model. , 2011, Physical review letters.

[9]  M. Keilhacker,et al.  Characteristics of the divertor plasma in neutral-beam-heated ASDEX discharges , 1983 .

[10]  F. Wagner,et al.  A quarter-century of H-mode studies , 2007 .

[11]  D. Ryutov,et al.  Local properties of the magnetic field in a snowflake divertor , 2010 .

[12]  M. V. Umansky,et al.  Snowflake divertor configuration studies in National Spherical Torus Experimenta) , 2012 .

[13]  E. Kolemen,et al.  “Snowflake” divertor configuration in NSTX , 2010 .

[14]  J-M Moret,et al.  "Snowflake" H mode in a tokamak plasma. , 2010, Physical review letters.

[15]  Y. Feng,et al.  Implicit coupling of impurity transport at the SOL-core interface , 2013, Comput. Phys. Commun..

[16]  P. Valanju,et al.  On heat loading, novel divertors, and fusion reactors , 2006 .

[17]  S. Coda,et al.  Power distribution in the snowflake divertor in TCV , 2013 .

[18]  J. R. Martin-Solis,et al.  Plasma detachment in JET Mark I divertor experiments , 1998 .

[19]  Eric Gauthier,et al.  Studies in JET divertors of varied geometry. I: Non-seeded plasma operation , 1999 .

[20]  B. P. Duval,et al.  First EMC3-Eirene simulations of the TCV snowflake divertor , 2014 .

[21]  J. Contributors,et al.  ELM resolved energy distribution studies in the JET MKII Gas-Box divertor using infra-red thermography , 2007 .

[22]  David Ward,et al.  On the physics guidelines for a tokamak DEMO , 2013 .

[23]  Masahiro Kobayashi,et al.  Recent Improvements in the EMC3‐Eirene Code , 2014 .

[24]  H. Zohm,et al.  Calculation of Realistic Snowflake Equilibria for Next-Step Devices , 2013 .

[25]  Faa Federico Felici,et al.  Snowflake divertor plasmas on TCV , 2009 .

[26]  D. Ryutov Geometrical properties of a “snowflake” divertor , 2007 .

[27]  F. Sardei,et al.  3D Edge Modeling and Island Divertor Physics , 2004 .

[28]  A. Loarte Effects of divertor geometry on tokamak plasmas , 2001 .

[29]  Massimiliano Mattei,et al.  Advances in the physics basis for the European DEMO design , 2015 .

[30]  M. Wischmeier,et al.  A new experimental classification of divertor detachment in ASDEX Upgrade , 2013 .

[31]  B. Duval,et al.  Enhanced E→×B→ ?> drift effects in the TCV snowflake divertor , 2015 .