Strongly bound excitons in anatase TiO2 single crystals and nanoparticles
暂无分享,去创建一个
M Palummo | Á. Rubio | L. Chiodo | M. Chergui | G. Auböck | H. Berger | A. Magrez | M. Grioni | M Chergui | C. Bernhard | C. Bernhard | M. Palummo | E Baldini | L Chiodo | A Dominguez | S Moser | M Yazdi-Rizi | G Auböck | B P P Mallett | H Berger | A Magrez | C Bernhard | M Grioni | A Rubio | S. Moser | B. Mallett | M. Yazdi-Rizi | E. Baldini | A. Dominguez | Á. Rubio | A. Domínguez | M. Yazdi | G. Aubock
[1] E. Kapon,et al. Coulomb Correlation and Band Gap Renormalization at High Carrier Densities in Quantum Wires , 1997 .
[2] A. Burger,et al. Temperature dependence of band gaps in semiconductors: Electron-phonon interaction , 2012 .
[3] J. Shan,et al. Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.
[4] Andrea Marini,et al. yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..
[5] M. Grätzel,et al. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.
[6] H. Berger,et al. Pressure dependence of the large-polaron transport in anatase TiO2 single crystals , 2012 .
[7] David A. B. Miller,et al. Linear and nonlinear optical properties of semiconductor quantum wells , 1989 .
[8] Francis Levy,et al. Electrical and optical properties of TiO2 anatase thin films , 1994 .
[9] D. Sell,et al. Resolved Free-Exciton Transitions in the Optical-Absorption Spectrum of GaAs , 1972 .
[10] Wei Ruan,et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.
[11] L. Iyengar,et al. Thermal Expansion of Rutile and Anatase , 1970 .
[12] C. Sanchez,et al. Quantum size effect in TiO2 nanoparticles: does it exist? , 2000 .
[13] L. Reining,et al. Role of localized electrons in electron-hole interaction: The case of SrTiO3 , 2013 .
[14] M. Igarashi,et al. Structure dependence of reflection spectra of TiO2 single crystals , 1998 .
[15] S. Louie,et al. Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.
[16] F. van Mourik,et al. Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption. , 2012, Optics letters.
[17] A. Fujishima,et al. Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.
[18] C. Minero,et al. Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles , 1993 .
[19] W. J. Anderson,et al. Anomalous temperature dependence of the energy gap of AgGaS2 , 1973 .
[20] Á. Rubio,et al. The Nature of Radiative Transitions in TiO2-Based Nanosheets , 2012 .
[21] Helmuth Berger,et al. Infrared reflectivity and lattice fundamentals in anatase TiO 2 s , 1997 .
[22] S. Lebègue,et al. Structural, electronic and optical properties of cubic SrTiO3 and KTaO3: Ab initio and GW calculations , 2012 .
[23] Tao Qian,et al. A precise method for visualizing dispersive features in image plots. , 2011, The Review of scientific instruments.
[24] H. Haug,et al. Basic mechanisms of the optical nonlinearities of semiconductors near the band edge , 1985 .
[25] Optical properties of single-crystal anatase TiO2 , 1997 .
[26] Jin Zou,et al. Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.
[27] M. Hybertsen,et al. Quasiparticle and optical properties of rutile and anatase TiO 2 , 2010, 1006.4085.
[28] J. J. Rehr,et al. Optical to UV spectra and birefringence of SiO2 and TiO2: First-principles calculations with excitonic effects , 2008, 0807.1920.
[29] L. Chiodo,et al. Excitons at the (001) surface of anatase: spatial behavior and optical signatures , 2011 .
[30] Francis Levy,et al. Photoluminescence in TiO2 anatase single crystals , 1993 .
[31] Nuggehalli M. Ravindra,et al. Temperature dependence of the energy gap in semiconductors , 1979 .
[32] P. E. Trevisanutto,et al. Anomalous excitons and screenings unveiling strong electronic correlations in SrTi 1 -x Nb x O 3 (0 ≤x ≤0.005 ) , 2015 .
[33] A. Taleb,et al. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy , 2007 .
[34] Tang,et al. Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.
[35] Renormalization of the Optical Response of Semiconductors by Electron-Phonon Interaction , 2001, cond-mat/0108160.
[36] N. Serpone,et al. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? , 1995 .
[37] Georg Kresse,et al. Direct view at excess electrons in TiO2 rutile and anatase. , 2014, Physical review letters.
[38] R. Leonelli,et al. Optical properties of rutile near its fundamental band gap. , 1995, Physical review. B, Condensed matter.
[39] M. Chergui,et al. Mapping of the photoinduced electron traps in TiO₂ by picosecond X-ray absorption spectroscopy. , 2014, Angewandte Chemie.
[40] Rabe,et al. Optimized pseudopotentials. , 1990, Physical review. B, Condensed matter.
[41] F. Lévy,et al. Growth and Raman spectroscopic characterization of TiO2 anatase single crystals , 1993 .
[42] W. Schmidt,et al. The electronic structure and optical response of rutile, anatase and brookite TiO2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[43] N. A. Deskins,et al. Electron transport via polaron hopping in bulk TiO2 : A density functional theory characterization , 2007 .
[44] A. Bostwick,et al. Tunable polaronic conduction in anatase TiO2. , 2013, Physical review letters.
[45] David A. Strubbe,et al. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..
[46] D. Baeriswyl,et al. Optical probe of ferroelectric order in bulk and thin-film perovskite titanates , 2013, 1309.1245.
[47] J. Pascual,et al. Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .
[48] J. Humlíček,et al. Diffraction effects in infrared ellipsometry of conducting samples , 2004 .
[49] F. Giustino,et al. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization , 2016, 1604.02394.
[50] Shepard Roberts,et al. Dielectric Constants and Polarizabilities of Ions in Simple Crystals and Barium Titanate , 1949 .
[51] N. Umezawa,et al. Anisotropic Nature of Anatase TiO 2 and Its Intrinsic (001) Surface Electronic States , 2015 .
[52] John F. Muth,et al. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .
[53] West,et al. Lasing from excitons in quantum wires. , 1993, Physical review letters.
[54] R. J. Elliott,et al. Intensity of Optical Absorption by Excitons , 1957 .
[55] A. Selloni,et al. Bulk and Surface Polarons in Photoexcited Anatase TiO2 , 2011 .
[56] B. Monserrat. Correlation effects on electron-phonon coupling in semiconductors: Many-body theory along thermal lines , 2016, 1603.00551.
[57] D. Aspnes. Approximate solution of ellipsometric equations for optically biaxial crystals. , 1980, Journal of the Optical Society of America.
[58] Á. Rubio,et al. Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases , 2010, 1003.6010.
[59] C. Keffer,et al. PbTe Debye-Waller Factors and Band-Gap Temperature Dependence , 1968 .
[60] Rossi,et al. Exciton binding energy in GaAs V-shaped quantum wires. , 1994, Physical review letters.
[61] J. A. Soininen,et al. Anisotropic excitonic effects in the energy loss function of hexagonal boron nitride , 2010, 1005.0930.
[62] Sara Mahshid,et al. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution , 2006 .
[63] L. Reining,et al. Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .
[64] L. Hedin. NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .
[65] M. Altarelli,et al. Magneto-optical determination of exciton binding-energy in GaAs-Ga1-xAlx as quantum wells , 1984 .
[66] Rabe,et al. Erratum: Optimized pseudopotentials , 1991, Physical review. B, Condensed matter.
[67] M. Chergui,et al. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2 , 2015, Scientific Reports.