Strongly bound excitons in anatase TiO2 single crystals and nanoparticles

Anatase TiO2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron–hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier–Mott and Frenkel regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. The universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.Here the authors combine steady-state angle-resolved photoemission spectroscopy, ellipsometry and ultrafast two-dimensional ultraviolet spectroscopy to examine the role of many-body correlations in anatase TiO2, revealing the existence of strongly bound excitons in single crystals and nanoparticles.

[1]  E. Kapon,et al.  Coulomb Correlation and Band Gap Renormalization at High Carrier Densities in Quantum Wires , 1997 .

[2]  A. Burger,et al.  Temperature dependence of band gaps in semiconductors: Electron-phonon interaction , 2012 .

[3]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[4]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[5]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[6]  H. Berger,et al.  Pressure dependence of the large-polaron transport in anatase TiO2 single crystals , 2012 .

[7]  David A. B. Miller,et al.  Linear and nonlinear optical properties of semiconductor quantum wells , 1989 .

[8]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[9]  D. Sell,et al.  Resolved Free-Exciton Transitions in the Optical-Absorption Spectrum of GaAs , 1972 .

[10]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[11]  L. Iyengar,et al.  Thermal Expansion of Rutile and Anatase , 1970 .

[12]  C. Sanchez,et al.  Quantum size effect in TiO2 nanoparticles: does it exist? , 2000 .

[13]  L. Reining,et al.  Role of localized electrons in electron-hole interaction: The case of SrTiO3 , 2013 .

[14]  M. Igarashi,et al.  Structure dependence of reflection spectra of TiO2 single crystals , 1998 .

[15]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[16]  F. van Mourik,et al.  Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption. , 2012, Optics letters.

[17]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[18]  C. Minero,et al.  Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles , 1993 .

[19]  W. J. Anderson,et al.  Anomalous temperature dependence of the energy gap of AgGaS2 , 1973 .

[20]  Á. Rubio,et al.  The Nature of Radiative Transitions in TiO2-Based Nanosheets , 2012 .

[21]  Helmuth Berger,et al.  Infrared reflectivity and lattice fundamentals in anatase TiO 2 s , 1997 .

[22]  S. Lebègue,et al.  Structural, electronic and optical properties of cubic SrTiO3 and KTaO3: Ab initio and GW calculations , 2012 .

[23]  Tao Qian,et al.  A precise method for visualizing dispersive features in image plots. , 2011, The Review of scientific instruments.

[24]  H. Haug,et al.  Basic mechanisms of the optical nonlinearities of semiconductors near the band edge , 1985 .

[25]  Optical properties of single-crystal anatase TiO2 , 1997 .

[26]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[27]  M. Hybertsen,et al.  Quasiparticle and optical properties of rutile and anatase TiO 2 , 2010, 1006.4085.

[28]  J. J. Rehr,et al.  Optical to UV spectra and birefringence of SiO2 and TiO2: First-principles calculations with excitonic effects , 2008, 0807.1920.

[29]  L. Chiodo,et al.  Excitons at the (001) surface of anatase: spatial behavior and optical signatures , 2011 .

[30]  Francis Levy,et al.  Photoluminescence in TiO2 anatase single crystals , 1993 .

[31]  Nuggehalli M. Ravindra,et al.  Temperature dependence of the energy gap in semiconductors , 1979 .

[32]  P. E. Trevisanutto,et al.  Anomalous excitons and screenings unveiling strong electronic correlations in SrTi 1 -x Nb x O 3 (0 ≤x ≤0.005 ) , 2015 .

[33]  A. Taleb,et al.  Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy , 2007 .

[34]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[35]  Renormalization of the Optical Response of Semiconductors by Electron-Phonon Interaction , 2001, cond-mat/0108160.

[36]  N. Serpone,et al.  Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? , 1995 .

[37]  Georg Kresse,et al.  Direct view at excess electrons in TiO2 rutile and anatase. , 2014, Physical review letters.

[38]  R. Leonelli,et al.  Optical properties of rutile near its fundamental band gap. , 1995, Physical review. B, Condensed matter.

[39]  M. Chergui,et al.  Mapping of the photoinduced electron traps in TiO₂ by picosecond X-ray absorption spectroscopy. , 2014, Angewandte Chemie.

[40]  Rabe,et al.  Optimized pseudopotentials. , 1990, Physical review. B, Condensed matter.

[41]  F. Lévy,et al.  Growth and Raman spectroscopic characterization of TiO2 anatase single crystals , 1993 .

[42]  W. Schmidt,et al.  The electronic structure and optical response of rutile, anatase and brookite TiO2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  N. A. Deskins,et al.  Electron transport via polaron hopping in bulk TiO2 : A density functional theory characterization , 2007 .

[44]  A. Bostwick,et al.  Tunable polaronic conduction in anatase TiO2. , 2013, Physical review letters.

[45]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[46]  D. Baeriswyl,et al.  Optical probe of ferroelectric order in bulk and thin-film perovskite titanates , 2013, 1309.1245.

[47]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[48]  J. Humlíček,et al.  Diffraction effects in infrared ellipsometry of conducting samples , 2004 .

[49]  F. Giustino,et al.  One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization , 2016, 1604.02394.

[50]  Shepard Roberts,et al.  Dielectric Constants and Polarizabilities of Ions in Simple Crystals and Barium Titanate , 1949 .

[51]  N. Umezawa,et al.  Anisotropic Nature of Anatase TiO 2 and Its Intrinsic (001) Surface Electronic States , 2015 .

[52]  John F. Muth,et al.  Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .

[53]  West,et al.  Lasing from excitons in quantum wires. , 1993, Physical review letters.

[54]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[55]  A. Selloni,et al.  Bulk and Surface Polarons in Photoexcited Anatase TiO2 , 2011 .

[56]  B. Monserrat Correlation effects on electron-phonon coupling in semiconductors: Many-body theory along thermal lines , 2016, 1603.00551.

[57]  D. Aspnes Approximate solution of ellipsometric equations for optically biaxial crystals. , 1980, Journal of the Optical Society of America.

[58]  Á. Rubio,et al.  Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases , 2010, 1003.6010.

[59]  C. Keffer,et al.  PbTe Debye-Waller Factors and Band-Gap Temperature Dependence , 1968 .

[60]  Rossi,et al.  Exciton binding energy in GaAs V-shaped quantum wires. , 1994, Physical review letters.

[61]  J. A. Soininen,et al.  Anisotropic excitonic effects in the energy loss function of hexagonal boron nitride , 2010, 1005.0930.

[62]  Sara Mahshid,et al.  Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution , 2006 .

[63]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[64]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[65]  M. Altarelli,et al.  Magneto-optical determination of exciton binding-energy in GaAs-Ga1-xAlx as quantum wells , 1984 .

[66]  Rabe,et al.  Erratum: Optimized pseudopotentials , 1991, Physical review. B, Condensed matter.

[67]  M. Chergui,et al.  Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2 , 2015, Scientific Reports.