Two- and three-dimensional motions of a body controlled by an internal movable mass
暂无分享,去创建一个
[1] L. F. Chernousko. Locomotion of multibody robotic systems: Dynamics and optimization , 2018 .
[2] F. L. Chernous’ko. Optimal Control of the Motion of a Two-Mass System , 2018 .
[3] Felix L. Chernousko,et al. Optimal control of the rectilinear motion of a two-body system in a resistive medium , 2012 .
[4] Katsuhisa Furuta,et al. Motion Generation of the Capsubot Using Internal Force and Static Friction , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.
[5] Heinz Wörn,et al. Remotely controllable mobile microrobots acting as nano positioners and intelligent tweezers in scanning electron microscopes (SEMs) , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).
[6] Evangelos Papadopoulos,et al. Dynamics, Design and Simulation of a Novel Microrobotic Platform Employing Vibration Microactuators , 2006 .
[7] F. L. Chernousko. Dynamics of a Body Controlled by Internal Motions , 2007 .
[8] F. L. Chernous’ko. Analysis and optimization of the motion of a body controlled by means of a movable internal mass , 2006 .
[10] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[11] F. L. Chernous’ko. The optimal periodic motions of a two-mass system in a resistant medium , 2008 .
[12] L. Bittner. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko, The Mathematical Theory of Optimal Processes. VIII + 360 S. New York/London 1962. John Wiley & Sons. Preis 90/– , 1963 .