CheckMATE: Confronting your favourite new physics model with LHC data

Abstract In the first three years of running, the LHC has delivered a wealth of new data that is now being analysed. With over 20 fb−1 of integrated luminosity, both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious task. Check mate (Check Models At Terascale Energies) is a program package which accepts simulated event files in many formats for any model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future. Program summary Program title: CheckMATE Catalogue identifier: AEUT_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUT_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 179960 No. of bytes in distributed program, including test data, etc.: 6089336 Distribution format: tar.gz Programming language: C++, Python. Computer: PC, Mac. Operating system: Linux, Mac OS. RAM: Bytes Classification: 11.9. External routines: ROOT, Python, Delphes (included with the distribution) Nature of problem: The LHC has delivered a wealth of new data that is now being analysed. Both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious and repetitive task. Solution method: CheckMATE is a program package which accepts simulated event files in many formats for any model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future. Restrictions: Only a subset of available experimental results have been implemented. Additional comments: Checkmate is built upon the tools and hard work of many people. If Checkmate is used in your publication it is extremely important that all of the following citations are included, • Delphes 3 [1]. • FastJet [2, 3]. • Anti-kt jet algorithm [4]. • C L s prescription [5]. • In analyses that use the MT2 kinematical discriminant we use the Oxbridge Kinetics Library [6, 7] and the algorithm developed by Cheng and Han [8]. • All experimental analyses that were used to set limits in the study. • The Monte Carlo event generator that was used. Running time: The running time scales about linearly with the number of input events provided by the user. The detector simulation/analysis of 20000 events needs about 50 s/1 s for a single core calculation on an Intel Core i5-3470 with 3.2 GHz and 8 GB RAM. References: [1] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lematre, et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment arXiv:1307.6346 . [2] M. Cacciari, G.P. Salam, G. Soyez, FastJet User Manual, Eur. Phys. J. C72 (2012) 1896. arXiv:1111.6097 , http://dx.doi.org/10.1140/epjc/s10052-012-1896-2 . [3] M. Cacciari, G.P. Salam, Dispelling the N3 myth for the k t jet-finder, Phys. Lett. B641 (2006) 57–61. arXiv:hep-ph/0512210 , http://dx.doi.org/10.1016/j.physletb.2006.08.037 . [4] M. Cacciari, G.P. Salam, G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 0804 (2008) 063. arXiv:0802.1189 , http://dx.doi.org/10.1088/1126-6708/2008/04/063 . [5] A.L. Read, Presentation of search results: the cl’s technique, Journal of Physics G: Nuclear and Particle Physics 28 (10) (2002) 2693. URL http://stacks.iop.org/0954-3899/28/i=10/a=313 [6] C. Lester, D. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B463 (1999) 99–103. arXiv:hep-ph/9906349 , http://dx.doi.org/10.1016/S0370-2693(99)00945-4 . [7] A. Barr, C. Lester, P. Stephens, m(T2): The Truth behind the glamour, J. Phys. G29 (2003) 2343–2363. arXiv:hep-ph/0304226 , http://dx.doi.org/10.1088/0954-3899/29/10/304 . [8] H.-C. Cheng, Z. Han, Minimal Kinematic Constraints and m(T2), JHEP 0812 (2008) 063. arXiv:0810.5178 , http://dx.doi.org/10.1088/1126-6708/2008/12/063 .

[1]  C. Lester,et al.  Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders , 1999, hep-ph/9906349.

[2]  Pavel Strachota,et al.  Measurement of the inclusive W± and Z/γ∗ cross sections in the e and μ decay channels in pp collisions at √s=7TeV with the ATLAS detector , 2012 .

[3]  Howard E. Haber,et al.  The Search for Supersymmetry: Probing Physics Beyond the Standard Model , 1985 .

[4]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[5]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[6]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[7]  M. L. Ferrer,et al.  Measurement of the inclusive W± and Z/γ* cross sections in the e and μ decay channels in pp collisions at √s = 7 TeV with the ATLAS detector , 2012 .

[8]  R. Rattazzi,et al.  Theories with Gauge-Mediated Supersymmetry Breaking , 1998, hep-ph/9801271.

[9]  T. Tait,et al.  Constraints on dark matter from colliders , 2010, 1008.1783.

[10]  P. Catastini,et al.  Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgree , 2013, Journal of High Energy Physics.

[11]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[12]  A. Read Presentation of search results: the CLs technique , 2002 .

[13]  Antonio Salvucci,et al.  Measurement of muon momentum resolution of the ATLAS detector , 2012, 1201.4704.

[14]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[15]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[16]  K. Melnikov,et al.  Electroweak gauge boson production at hadron colliders through O(alpha(s)**2) , 2006, hep-ph/0609070.

[17]  Andy Buckley,et al.  Rivet user manual , 2010, Comput. Phys. Commun..

[18]  Matt Dobbs,et al.  The HepMC C++ Monte Carlo event record for High Energy Physics ? ? Available via the following web-a , 2001 .

[19]  Benjamin Fuks,et al.  MadAnalysis 5, a user-friendly framework for collider phenomenology , 2012, Comput. Phys. Commun..

[20]  M. Mangano,et al.  Matching matrix elements and shower evolution for top-pair production in hadronic collisions , 2006, hep-ph/0611129.

[21]  Ye Li,et al.  FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order , 2010, Comput. Phys. Commun..

[22]  Hsin-Chia Cheng,et al.  Minimal kinematic constraints and m T2 , 2008, 0810.5178.

[23]  A. Barr,et al.  m(T2): The Truth behind the glamour , 2003, hep-ph/0304226.

[24]  D. Duchesneau,et al.  QCD Event Generators , 1995 .

[25]  M. L. Ferrer,et al.  Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics , 2008, 0901.0512.

[26]  Eric Laenen,et al.  Soft-gluon resummation for squark and gluino hadroproduction , 2017 .

[27]  Steven Weinberg,et al.  Implications of Dynamical Symmetry Breaking , 1976 .

[28]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[29]  Savas Dimopoulos,et al.  The Hierarchy problem and new dimensions at a millimeter , 1998, hep-ph/9803315.

[30]  Tilman Plehn,et al.  Production of Charginos, Neutralinos, and Sleptons at Hadron Colliders , 1999 .

[31]  Jamie Tattersall,et al.  How low can SUSY go? Matching, monojets and compressed spectra , 2012, 1207.1613.

[32]  M. Cacciari,et al.  Dispelling the N3 myth for the kt jet-finder , 2005, hep-ph/0512210.

[33]  W. Beenakker,et al.  Supersymmetric top and bottom squark production at hadron colliders , 2010, 1006.4771.

[34]  Jared A. Evans,et al.  Simplified Models for LHC New Physics Searches , 2011, 1105.2838.

[35]  C. Rogan Kinematical variables towards new dynamics at the LHC , 2010, 1006.2727.

[36]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[37]  F. Krauss,et al.  QCD Matrix Elements + Parton Showers , 2001, hep-ph/0109231.

[38]  B. C. Allanach,et al.  SOFTSUSY: A program for calculating supersymmetric spectra☆ , 2001, hep-ph/0104145.

[39]  Leonard Susskind,et al.  Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory , 1979 .

[40]  Florian Staub,et al.  SARAH 4: A tool for (not only SUSY) model builders , 2013, Comput. Phys. Commun..

[41]  H. Nilles,et al.  Supersymmetry, Supergravity and Particle Physics , 1984 .

[42]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[43]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[44]  T. Tuuva,et al.  Search for supersymmetry in hadronic final states with missing transverse energy using the variables αT and b-quark multiplicity in pp collisions at $\sqrt{s} = 8\ \mathrm{TeV}$ , 2013, 1303.2985.

[45]  Michael Spira,et al.  Squark and gluino production at hadron colliders , 1997 .

[46]  Alexander Belyaev,et al.  CalcHEP 3.4 for collider physics within and beyond the Standard Model , 2012, Comput. Phys. Commun..

[47]  A. Kulesza,et al.  Threshold resummation for squark-antisquark and gluino-pair production at the LHC. , 2008, Physical review letters.

[48]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[49]  P. Zerwas,et al.  Stop production at hadron colliders , 1997, hep-ph/9710451.

[50]  M. Kramer,et al.  SQUARK AND GLUINO HADROPRODUCTION , 2011, 1105.1110.

[51]  M. Z. Mehta,et al.  Search for supersymmetry in hadronic final states with missing transverse energy using the variables αT and b-quark multiplicity in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{math , 2013, The European Physical Journal C.

[52]  A. Kulesza,et al.  Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC , 2009, 0905.4749.

[53]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[54]  J. T. Childers,et al.  Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data , 2011, 1110.3174.

[55]  Jamie Tattersall,et al.  Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra , 2012, 1211.4981.