Spectral deformations and soliton equations
暂无分享,去创建一个
[1] E. Isaacson,et al. An explicit solution of the inverse periodic problem for Hill's equation , 1987 .
[2] Björn Birnir,et al. Complex hill's equation and the complex periodic korteweg‐de vries equations , 1986 .
[3] H. McKean,et al. Hill’s surfaces and their theta functions , 1978 .
[4] V. Marčenko,et al. a Characterization of the Spectrum of Hill's Operator , 1975 .
[5] C. Jacobi. Zur Theorie der Variations-Rechnung und der Differential-Gleichungen. , 1837 .
[6] H. McKean. Geometry of KDV (2): Three examples , 1987 .
[7] Hardy functions and the inverse spectral method , 1983 .
[8] F. Gesztesy. A complete spectral characterization of the double commutation method , 1993 .
[9] J. L. Burchnall,et al. Commutative Ordinary Differential Operators , 1928 .
[10] V. Matveev,et al. Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation , 1975 .
[11] H. Knörrer,et al. An algebro-geometric interpretation of the Bäcklund-transformation for the Korteweg-de Vries equation , 1982 .
[12] E. Trubowitz,et al. Isospectral sets for boundary value problems on the unit interval , 1988, Ergodic Theory and Dynamical Systems.
[13] M. Krishna,et al. Almost Periodicity of Some Random Potentials , 1988 .
[14] H. McKean. Variation on a theme of Jacobi , 1985 .
[15] Joseph B. Keller,et al. Hill's equation with a large potential , 1985 .
[16] P. Sarnak. Spectral behavior of quasi periodic potentials , 1982 .
[17] S. Alber. On stationary problems for equations of korteweg‐de vries type , 1981 .
[18] C. S. Gardner,et al. Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .
[19] B. Birnir. An example of blow-up, for the complex KdV equation and existence beyond the blow-up , 1987 .
[20] Henry P. McKean,et al. Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .
[21] H. Flaschka,et al. The geometry of the Hill equation and of the Neumann system , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[22] V. Guillemin,et al. Spectral properties of a certain class of complex potentials , 1983 .
[23] T. Kappeler. Fibration of the phase space for the Korteweg-de-Vries equation , 1991 .
[24] ALMOST PERIODICITY OF INFINITE-ZONE POTENTIALS , 1982 .
[25] H. McKean. Geometry of KdV (1): Addition and the Unimodular Spectral Classes , 1986 .
[26] U. Schmincke. On Schrödinger's factorization method for Sturm-Liouville operators , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[27] Björn Birnir,et al. Singularities of the complex korteweg‐de vries flows , 1986 .
[28] B. M. Levitan. STURM-LIOUVILLE OPERATORS ON THE WHOLE LINE, WITH THE SAME DISCRETE SPECTRUM , 1988 .
[29] H. McKean,et al. The spectral class of the quantum-mechanical harmonic oscillator , 1982 .
[30] Mutiara Buys,et al. The inverse periodic problem for Hill's equation with a finite-gap potential , 1984 .
[31] P. Deift,et al. Inverse scattering on the line , 1979 .
[32] H. McKean,et al. Geometry of KDV (4): Abel sums, Jacobi variety, and theta function in the scattering case , 1990 .
[33] Sergei Petrovich Novikov,et al. NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .
[34] W. Craig. The trace formula for Schrödinger operators on the line , 1989 .
[35] Boris Dubrovin,et al. Theta functions and non-linear equations , 1981 .
[36] P. Deift. Applications of a commutation formula , 1978 .
[37] B. Levitan. ON THE CLOSURE OF THE SET OF FINITE-ZONE POTENTIALS , 1985 .
[38] M. Crum. ASSOCIATED STURM-LIOUVILLE SYSTEMS , 1999, physics/9908019.
[39] Katsunori Iwasaki. Inverse problem for Sturm-Liouville and hill equations , 1987 .
[40] E. Harrell. The band-structure of a one-dimensional, periodic system in a scaling limit , 1979 .
[41] H. McKean. Integrable systems and algebraic curves , 1979 .