Spectral deformations and soliton equations

Publisher Summary This chapter describes the construction of new solutions V of the Korteweg-deVries (KdV) hierarchy of equations by deformations of a given finite-gap solution V0. To describe the nature of these deformations the chapter assumes a moment that the given real-valued quasi-periodic finite-gap solution V0 is described in terms of the Its–Matveev formula. The chapter also gives brief account of the KdV hierarchy using a recursive approach ans describes real-valued quasi-periodic finite-gap solutions and the underlying Its–Matveev formula in some detail. To describe the hierarchy of KdV equations the chapter first recalls the recursive approach to the underlying Lax pairs. In addition, the chapter introduces isospectral and non-isospectral deformations in a systematic way by alluding to single and double commutation techniques.

[1]  E. Isaacson,et al.  An explicit solution of the inverse periodic problem for Hill's equation , 1987 .

[2]  Björn Birnir,et al.  Complex hill's equation and the complex periodic korteweg‐de vries equations , 1986 .

[3]  H. McKean,et al.  Hill’s surfaces and their theta functions , 1978 .

[4]  V. Marčenko,et al.  a Characterization of the Spectrum of Hill's Operator , 1975 .

[5]  C. Jacobi Zur Theorie der Variations-Rechnung und der Differential-Gleichungen. , 1837 .

[6]  H. McKean Geometry of KDV (2): Three examples , 1987 .

[7]  Hardy functions and the inverse spectral method , 1983 .

[8]  F. Gesztesy A complete spectral characterization of the double commutation method , 1993 .

[9]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators , 1928 .

[10]  V. Matveev,et al.  Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation , 1975 .

[11]  H. Knörrer,et al.  An algebro-geometric interpretation of the Bäcklund-transformation for the Korteweg-de Vries equation , 1982 .

[12]  E. Trubowitz,et al.  Isospectral sets for boundary value problems on the unit interval , 1988, Ergodic Theory and Dynamical Systems.

[13]  M. Krishna,et al.  Almost Periodicity of Some Random Potentials , 1988 .

[14]  H. McKean Variation on a theme of Jacobi , 1985 .

[15]  Joseph B. Keller,et al.  Hill's equation with a large potential , 1985 .

[16]  P. Sarnak Spectral behavior of quasi periodic potentials , 1982 .

[17]  S. Alber On stationary problems for equations of korteweg‐de vries type , 1981 .

[18]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[19]  B. Birnir An example of blow-up, for the complex KdV equation and existence beyond the blow-up , 1987 .

[20]  Henry P. McKean,et al.  Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .

[21]  H. Flaschka,et al.  The geometry of the Hill equation and of the Neumann system , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  V. Guillemin,et al.  Spectral properties of a certain class of complex potentials , 1983 .

[23]  T. Kappeler Fibration of the phase space for the Korteweg-de-Vries equation , 1991 .

[24]  ALMOST PERIODICITY OF INFINITE-ZONE POTENTIALS , 1982 .

[25]  H. McKean Geometry of KdV (1): Addition and the Unimodular Spectral Classes , 1986 .

[26]  U. Schmincke On Schrödinger's factorization method for Sturm-Liouville operators , 1978, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  Björn Birnir,et al.  Singularities of the complex korteweg‐de vries flows , 1986 .

[28]  B. M. Levitan STURM-LIOUVILLE OPERATORS ON THE WHOLE LINE, WITH THE SAME DISCRETE SPECTRUM , 1988 .

[29]  H. McKean,et al.  The spectral class of the quantum-mechanical harmonic oscillator , 1982 .

[30]  Mutiara Buys,et al.  The inverse periodic problem for Hill's equation with a finite-gap potential , 1984 .

[31]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[32]  H. McKean,et al.  Geometry of KDV (4): Abel sums, Jacobi variety, and theta function in the scattering case , 1990 .

[33]  Sergei Petrovich Novikov,et al.  NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .

[34]  W. Craig The trace formula for Schrödinger operators on the line , 1989 .

[35]  Boris Dubrovin,et al.  Theta functions and non-linear equations , 1981 .

[36]  P. Deift Applications of a commutation formula , 1978 .

[37]  B. Levitan ON THE CLOSURE OF THE SET OF FINITE-ZONE POTENTIALS , 1985 .

[38]  M. Crum ASSOCIATED STURM-LIOUVILLE SYSTEMS , 1999, physics/9908019.

[39]  Katsunori Iwasaki Inverse problem for Sturm-Liouville and hill equations , 1987 .

[40]  E. Harrell The band-structure of a one-dimensional, periodic system in a scaling limit , 1979 .

[41]  H. McKean Integrable systems and algebraic curves , 1979 .