The asymmetry of galaxies: physical morphology for nearby and high redshift galaxies

We present a detailed study of rotational asymmetry in galaxies for both morphological and physical diagnostic purposes. An unambiguous method for computing asymmetry is developed, which is robust for both distant and nearby galaxies. By degrading real galaxy images, we test the reliability of this asymmetry measure over a range of observational conditions, e.g., spatial resolution and signal-to-noise ratio (S/N). Compared to previous methods, this new algorithm avoids the ambiguity associated with choosing a center by using a minimization method and successfully corrects for variations in S/N. There is, however, a strong relationship between the rotational asymmetry and physical resolution (distance at fixed spatial resolution): objects become more symmetric when less well-resolved. We further investigate asymmetry as a function of galactic radius and rotation. We find the asymmetry index has a strong radial dependence that differs vastly between Hubble types. As a result, a meaningful asymmetry index must be specified within a well-defined radius representative of the physical galaxy scale. We enumerate several viable alternatives, which exclude the use of isophotes. Asymmetry as a function of angle (A) is also a useful indicator of ellipticity and higher order azimuthal structure. In general, we show that the power of asymmetry as a morphological parameter lies in the strong correlation with B-V color for galaxies undergoing normal star formation spanning all Hubble types from ellipticals to irregular galaxies. The few interacting galaxies in our study do not fall on this asymmetry-color fiducial sequence, as these galaxies are too asymmetric for their color. We suggest this fact can be used to distinguish between normal galaxies and galaxies undergoing an interaction or merger.

[1]  M. Serra-Ricart,et al.  Multidimensional statistical analysis using artificial neural networks: astronomical applications , 1993 .

[2]  Ann I. Zabludoff,et al.  Spectral classification of galaxies along the hubble sequence , 1995 .

[3]  O. Lahav,et al.  An artificial neural network approach to the classification of galaxy spectra , 1996, astro-ph/9608073.

[4]  The Symmetry, Color, and Morphology of Galaxies , 1997, astro-ph/9710234.

[5]  M. Bershady The Optical and Near-Infrared Colors of Galaxies. II. Spectral Classification , 1995 .

[6]  Francisco Valdes,et al.  The Morphologies of Distant Galaxies. I. an Automated Classification System , 1994 .

[7]  R. Tully Nearby Galaxies Catalog , 1988 .

[8]  W. W. Morgan PRELIMINARY CLASSIFICATION OF THE FORMS OF GALAXIES ACCORDING TO THEIR STELLAR POPULATION. II , 1958 .

[9]  S. C. Odewahn,et al.  AUTOMATED CLASSIFICATION OF ASTRONOMICAL IMAGES , 1995 .

[10]  R. Koopmann,et al.  The Trouble with Hubble Types in the Virgo Cluster , 1998, astro-ph/9802210.

[11]  M. Bershady,et al.  The optical and near-infrared colors of galaxies, 1: The photometric data , 1994 .

[12]  A. Sandage The Hubble atlas of galaxies , 1961 .

[13]  Canada-France Redshift Survey: Hubble Space Telescope Imaging of High-Redshift Field Galaxies , 1995, astro-ph/9507028.

[14]  A. Naim,et al.  What is a peculiar galaxy , 1996, astro-ph/9607113.

[15]  E. Hubble The Realm of the Nebulæ , 1956, Nature.

[16]  Stephen C. Odewahn,et al.  Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations , 1996 .

[17]  A. Sandage,et al.  The Carnegie atlas of galaxies , 1994 .

[18]  O. Lahav,et al.  Principal component analysis of synthetic galaxy spectra , 1998, astro-ph/9805130.

[19]  Sidney van den Bergh,et al.  A Preliminary Luminosity Clssification of Late-Type Galaxies. , 1960 .

[20]  Ralf Bender,et al.  A Proposed Revision of the Hubble Sequence for Elliptical Galaxies , 1996 .

[21]  B. Elmegreen,et al.  Flocculent and grand design spiral structure in field, binary and group galaxies , 1982 .

[22]  J. Huchra The nature of Markarian galaxies. , 1977 .

[23]  B. Elmegreen,et al.  Optical Tracers of Spiral Wave Resonances in Galaxies: II. Hidden Three-Arm Spirals in a Sample of 18 Galaxies , 1991 .

[24]  Carl J. Grillmair,et al.  The Centers of Early-Type Galaxies with HST.I.An Observational Survey , 1995 .

[25]  A Preliminary Liminosity Classification for Galaxies of Type Sb. , 1960 .

[26]  William H. Press,et al.  Spectral Classification and Luminosity Function of Galaxies in the Las Campanas Redshift Survey , 1997, astro-ph/9711227.

[27]  F. Schweizer Photometric studies of spiral structure. I. The disks and arms of six Sb I and Sc I galaxies , 1976 .

[28]  Karl Glazebrook,et al.  The morphologies of distant galaxies. II. Classifications from the Hubble Space Telescope medium deep survey , 1996 .

[29]  O. Lahav,et al.  Morphological Classification of galaxies by Artificial Neural Networks , 1992 .

[30]  R. Wyse,et al.  Discovery of Recent Star Formation in the Extreme Outer Regions of Disk Galaxies , 1998, astro-ph/9808151.

[31]  Matthew A. Bershady,et al.  Near-Infrared Galaxy Counts to J and K ~ 24 as a Function of Image Size* , 1998 .

[32]  P. Hodge The Radial Distribution of H II Regions in Spiral Galaxies , 1969 .

[33]  A. Szalay,et al.  Spectral classification of galaxies: An Orthogonal approach , 1994, astro-ph/9411044.

[34]  V. Petrosian,et al.  Surface brightness and evolution of galaxies , 1976 .

[35]  Karl Glazebrook,et al.  A Morphological Catalog of Galaxies in the Hubble Deep Field , 1996 .

[36]  R. Kron,et al.  The Deep Universe: Saas-Fee Advanced Course 23. Lecture Notes 1993. Swiss Society for Astrophysics and Astronomy , 1995 .

[37]  Mamoru Doi,et al.  Morphological classification of galaxies using simple photometric parameters , 1993 .

[38]  J. Gunn,et al.  Spectroscopy of galaxies in distant clusters. IV - A catalog of photometry and spectroscopy for galaxies in seven clusters with z in the range of 0.35 to 0.55 , 1992 .

[39]  H. Rix,et al.  Nonaxisymmetric structures in the stellar disks of galaxies , 1995, astro-ph/9505111.

[40]  Puragra Guhathakurta,et al.  A catalog of digital images of 113 nearby galaxies , 1996 .

[41]  H. Rix,et al.  Lopsidedness in Early-Type Disk Galaxies , 1998, astro-ph/9805316.

[42]  B. Whitmore,et al.  An objective classification system for spiral galaxies. I The two dominant dimensions , 1984 .

[43]  J. Anthony Tyson,et al.  The B jRI Photometric System , 1995 .

[44]  A. Naim,et al.  Automated morphological classification of APM galaxies by supervised artificial neural networks , 1995, astro-ph/9503001.

[45]  Digital surface photometry of galaxies toward a quantitative classification. IV: Principal component analysis of surface-photometric parameters , 1985 .

[46]  Mingsheng Han The luminosity structure and objective classification of galaxies , 1995 .

[47]  M. Haynes,et al.  A Photometric Method for Quantifying Asymmetries in Disk Galaxies , 1998, astro-ph/9807304.

[48]  S. Okamura,et al.  Digital surface photometry of galaxies toward a quantitative classification. III. A mean concentration index as a parameter representing the luminosity distribution. , 1984 .

[49]  B. Elmegreen,et al.  An Extension of Hierarchical Star Formation to Galactic Scales , 1996 .

[50]  O. Dahari The nuclear activity of interacting galaxies , 1985 .

[51]  N. R. Tanvir,et al.  Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996 .