Mitophagy, Mitochondrial Homeostasis, and Cell Fate

Mitochondria are highly plastic and dynamic organelles that have graded responses to the changing cellular, environmental, and developmental cues. Mitochondria undergo constant mitochondrial fission and fusion, mitochondrial biogenesis, and mitophagy, which coordinately control mitochondrial morphology, quantity, quality, turnover, and inheritance. Mitophagy is a cellular process that selectively removes the aged and damaged mitochondria via the specific sequestration and engulfment of mitochondria for subsequent lysosomal degradation. It plays a pivotal role in reinstating cellular homeostasis in normal physiology and conditions of stress. Damaged mitochondria may either instigate innate immunity through the overproduction of ROS or the release of mtDNA, or trigger cell death through the release of cytochrome c and other apoptogenic factors when mitochondria damage is beyond repair. Distinct molecular machineries and signaling pathways are found to regulate these mitochondrial dynamics and behaviors. It is less clear how mitochondrial behaviors are coordinated at molecular levels. BCL2 family proteins interact within family members to regulate mitochondrial outer membrane permeabilization and apoptosis. They were also described as global regulators of mitochondrial homeostasis and mitochondrial fate through their interaction with distinct partners including Drp1, mitofusins, PGAM5, and even LC3 that involved mitochondrial dynamics and behaviors. In this review, we summarize recent findings on molecular pathways governing mitophagy and its coordination with other mitochondrial behaviors, which together determine cellular fate.

[1]  A. Balajee,et al.  USP33 deubiquitinates PRKN/parkin and antagonizes its role in mitophagy , 2020, Autophagy.

[2]  Deric M. Park,et al.  Mitochondrial NIX Promotes Tumor Survival in the Hypoxic Niche of Glioblastoma. , 2019, Cancer research.

[3]  L. Boyd,et al.  Ubiquitination is required for the initial removal of paternal organelles in C. elegans. , 2019, Developmental biology.

[4]  Quan Chen,et al.  Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate , 2019, Cell Death & Differentiation.

[5]  Yanhong Zhang,et al.  RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation , 2019, The EMBO journal.

[6]  Y. Liou,et al.  STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism , 2019, Nature Communications.

[7]  Quan Chen,et al.  The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression , 2019, Nature Communications.

[8]  S. Girardin,et al.  Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing , 2019, Nature Immunology.

[9]  Mark A Sussman,et al.  BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation , 2019, Autophagy.

[10]  C. Moon,et al.  Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal , 2019, Front. Mol. Neurosci..

[11]  Lei Du,et al.  FUN14 Domain‐Containing 1–Mediated Mitophagy Suppresses Hepatocarcinogenesis by Inhibition of Inflammasome Activation in Mice , 2019, Hepatology.

[12]  Jian Wu,et al.  Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis , 2019, Laboratory Investigation.

[13]  J. Sandow,et al.  Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy , 2019, The EMBO journal.

[14]  J. Bertran-Gonzalez,et al.  Disease‐associated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria , 2018, The EMBO journal.

[15]  M. Trebak,et al.  Mitochondrial Ca2+ signaling. , 2018, Pharmacology & therapeutics.

[16]  S. Fulda,et al.  AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells , 2018, Autophagy.

[17]  K. Lim,et al.  PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1–Parkin-mediated mitophagy , 2018, Cell Research.

[18]  F. Polleux,et al.  MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size , 2018, Nature Communications.

[19]  K. Rogers,et al.  BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis , 2018, Science.

[20]  A. Prescott,et al.  Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand , 2018, Cell metabolism.

[21]  A. Whitworth,et al.  Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin , 2018, bioRxiv.

[22]  Catherine D. Kim,et al.  Regulation of mitophagy by the ubiquitin pathway in neurodegenerative diseases , 2018, Experimental biology and medicine.

[23]  C. Moraes,et al.  Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease , 2017, The Journal of Neuroscience.

[24]  A. Abramov,et al.  Mitochondrial calcium imbalance in Parkinson’s disease , 2017, Neuroscience Letters.

[25]  R. Youle,et al.  PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol , 2018, BMC Biology.

[26]  J. Saucerman,et al.  Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy , 2017, Nature Communications.

[27]  Y. Kido,et al.  MTORC1 Regulates both General Autophagy and Mitophagy Induction after Oxidative Phosphorylation Uncoupling , 2017, Molecular and Cellular Biology.

[28]  R. Shaw,et al.  AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. , 2017, Molecular cell.

[29]  A. Whitworth,et al.  PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? , 2017, Current opinion in genetics & development.

[30]  S. Snapper,et al.  Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages , 2017, Science.

[31]  V. Dötsch,et al.  Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins , 2017, Scientific Reports.

[32]  K. Macleod,et al.  Expanding perspectives on the significance of mitophagy in cancer. , 2017, Seminars in cancer biology.

[33]  T. Lamark,et al.  FKBP8 recruits LC3A to mediate Parkin‐independent mitophagy , 2017, EMBO reports.

[34]  M. Z. Cader,et al.  Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms , 2017, Trends in Neurosciences.

[35]  Prashant Mishra,et al.  Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor , 2017, Cell.

[36]  F. Torti,et al.  Mitochondria and Iron: current questions , 2017, Expert review of hematology.

[37]  Chuanmao Zhang,et al.  Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury , 2016, eLife.

[38]  Yi Zhang,et al.  Translational regulation of mitochondrial biogenesis. , 2016, Biochemical Society transactions.

[39]  T. Saigusa,et al.  Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy , 2016, The Journal of cell biology.

[40]  A. Perl,et al.  Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus , 2016, Science Signaling.

[41]  Rebecca Rojansky,et al.  Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1 , 2016, eLife.

[42]  Quan Chen,et al.  Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy , 2016, Autophagy.

[43]  N. Chandel,et al.  Mitochondrial ROS regulation of proliferating cells. , 2016, Free radical biology & medicine.

[44]  G. Voeltz,et al.  Multiple Dynamin family members collaborate to drive mitochondrial division , 2016, Nature.

[45]  J. Rothberg,et al.  Impaired Mitochondrial Dynamics and Mitophagy in Neuronal Models of Tuberous Sclerosis Complex. , 2016, Cell reports.

[46]  J. Parys,et al.  Bcl-2 proteins and calcium signaling: complexity beneath the surface , 2016, Oncogene.

[47]  Y. Li,et al.  MAVS maintains mitochondrial homeostasis via autophagy , 2016, Cell Discovery.

[48]  Michael J. Munson,et al.  mito-QC illuminates mitophagy and mitochondrial architecture in vivo , 2016, The Journal of cell biology.

[49]  M. Haigis,et al.  Mitochondria and Cancer , 2016, Cell.

[50]  Evan G. Williams,et al.  Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents , 2016, Nature Medicine.

[51]  Zheng Tan,et al.  Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy , 2016, Autophagy.

[52]  E. White,et al.  Mitochondria and Cancer. , 2016, Molecular cell.

[53]  K. Mihara,et al.  Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling , 2016, The Journal of cell biology.

[54]  Mark Ellisman,et al.  NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria , 2016, Cell.

[55]  Stefan P. Glaser,et al.  Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis , 2016, Nature Microbiology.

[56]  H. Ichijo,et al.  The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress , 2016, EBioMedicine.

[57]  F. Polleux,et al.  AMP-activated protein kinase mediates mitochondrial fission in response to energy stress , 2016, Science.

[58]  G. Dorn,et al.  Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice , 2015, Science.

[59]  L. Cantley,et al.  Regulation of mTORC1 by PI3K signaling. , 2015, Trends in cell biology.

[60]  T. Dawson,et al.  Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration , 2015, Proceedings of the National Academy of Sciences.

[61]  K. Macleod,et al.  Tumor suppressor functions of BNIP3 and mitophagy , 2015, Autophagy.

[62]  K. Otsu,et al.  BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32 , 2015, Autophagy.

[63]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[64]  R. von Bernhardi,et al.  Microglial cell dysregulation in brain aging and neurodegeneration , 2015, Front. Aging Neurosci..

[65]  Wenxian Wu,et al.  Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy , 2015, FEBS letters.

[66]  C. Taniguchi,et al.  Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma. , 2015, Cell reports.

[67]  A. Shah,et al.  Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation , 2015, Nature Communications.

[68]  A. Prescott,et al.  Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation , 2015, EMBO reports.

[69]  Nektarios Tavernarakis,et al.  Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans , 2015, Nature.

[70]  L. Scorrano,et al.  Extracellular Regulated Kinase Phosphorylates Mitofusin 1 to Control Mitochondrial Morphology and Apoptosis , 2015, Molecular cell.

[71]  P. Kim,et al.  Deubiquitinating enzymes regulate PARK2-mediated mitophagy , 2015, Autophagy.

[72]  H. Puthalakath,et al.  BH3‐only proteins: a 20‐year stock‐take , 2015, The FEBS journal.

[73]  Qian Cai,et al.  Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. , 2015, Human molecular genetics.

[74]  L. Scorrano,et al.  Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. , 2015, Cell metabolism.

[75]  O. Larsson,et al.  mTOR coordinates protein synthesis, mitochondrial activity and proliferation , 2015, Cell cycle.

[76]  R. Means,et al.  Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response , 2014, Nature.

[77]  S. Campello,et al.  AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1 , 2014, Cell Death and Differentiation.

[78]  Seamus J. Martin,et al.  Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. , 2014, Cell reports.

[79]  Thomas M. Durcan,et al.  USP8 regulates mitophagy by removing K6‐linked ubiquitin conjugates from parkin , 2014, The EMBO journal.

[80]  Jiujiu Yu,et al.  Inflammasome activation leads to Caspase-1–dependent mitochondrial damage and block of mitophagy , 2014, Proceedings of the National Academy of Sciences.

[81]  E. Holzbaur,et al.  Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation , 2014, Proceedings of the National Academy of Sciences.

[82]  Prashant Mishra,et al.  Mitochondrial dynamics and inheritance during cell division, development and disease , 2014, Nature Reviews Molecular Cell Biology.

[83]  T. Dawson,et al.  Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson’s-like movement disorder , 2014, Nature Communications.

[84]  G. Washko,et al.  Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. , 2014, The Journal of clinical investigation.

[85]  S. Cullen,et al.  Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. , 2014, Molecular cell.

[86]  N. Hattori,et al.  Regulation by mitophagy. , 2014, The international journal of biochemistry & cell biology.

[87]  Quan Chen,et al.  The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy , 2014, Autophagy.

[88]  T. Saigusa,et al.  Tor and the Sin3–Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast , 2014, Journal of Cell Science.

[89]  S. Sollott,et al.  Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. , 2014, Physiological reviews.

[90]  D. Kirkpatrick,et al.  The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy , 2014, Nature.

[91]  P. Verstreken,et al.  The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy , 2014, Human molecular genetics.

[92]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[93]  Soojay Banerjee,et al.  PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity , 2014, The Journal of cell biology.

[94]  M. Karbowski,et al.  Drp1 is dispensable for apoptotic cytochrome c release in primed MCF10A and fibroblast cells but affects Bcl‐2 antagonist‐induced respiratory changes , 2014, British journal of pharmacology.

[95]  Hyeseong Cho,et al.  MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival , 2014, Cell Death and Disease.

[96]  H. McBride,et al.  Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control , 2014, The EMBO journal.

[97]  Chen Yan,et al.  A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30 , 2014, Cell Research.

[98]  Simon C Watkins,et al.  Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells , 2013, Nature Cell Biology.

[99]  D. Klionsky,et al.  Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy , 2013, Autophagy.

[100]  T. Saigusa,et al.  Casein kinase 2 is essential for mitophagy , 2013, EMBO reports.

[101]  H. McBride,et al.  MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. , 2013, Molecular cell.

[102]  P. Licznerski,et al.  A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis , 2013, Nature Cell Biology.

[103]  G. Dorn,et al.  PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria , 2013, Science.

[104]  K. Sinha,et al.  Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis , 2013, Archives of Toxicology.

[105]  Daehee Hwang,et al.  A Systems Approach for Decoding Mitochondrial Retrograde Signaling Pathways , 2013, Science Signaling.

[106]  R. Eils,et al.  Modulation of Serines 17 and 24 in the LC3-interacting Region of Bnip3 Determines Pro-survival Mitophagy versus Apoptosis* , 2012, The Journal of Biological Chemistry.

[107]  Xiaoxue Zhang,et al.  Parkin Protein Deficiency Exacerbates Cardiac Injury and Reduces Survival following Myocardial Infarction*♦ , 2012, The Journal of Biological Chemistry.

[108]  Y. Peterson,et al.  Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy , 2012, Nature chemical biology.

[109]  N. Barbarroja,et al.  Ablation of PGC1 beta prevents mTOR dependent endoplasmic reticulum stress response , 2012, Experimental Neurology.

[110]  T. Veenstra,et al.  Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. , 2012, Molecules and Cells.

[111]  S. Archer,et al.  Dynamin-Related Protein 1–Mediated Mitochondrial Mitotic Fission Permits Hyperproliferation of Vascular Smooth Muscle Cells and Offers a Novel Therapeutic Target in Pulmonary Hypertension , 2012, Circulation research.

[112]  S. Rikka,et al.  Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy* , 2012, The Journal of Biological Chemistry.

[113]  M. LaVoie,et al.  The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax , 2012, Proceedings of the National Academy of Sciences.

[114]  H. McBride,et al.  A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes , 2012, Current Biology.

[115]  P. Xue,et al.  Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells , 2012, Nature Cell Biology.

[116]  Xiaodong Wang,et al.  The Mitochondrial Phosphatase PGAM5 Functions at the Convergence Point of Multiple Necrotic Death Pathways , 2012, Cell.

[117]  D. Walker,et al.  Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. , 2011, Cell metabolism.

[118]  Youngil Lee,et al.  Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. , 2011, American journal of physiology. Heart and circulatory physiology.

[119]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[120]  Xiangmei Zhou,et al.  A role for mitochondria in NLRP3 inflammasome activation , 2011, Nature.

[121]  Nico Tjandra,et al.  Bcl-xL Retrotranslocates Bax from the Mitochondria into the Cytosol , 2011, Cell.

[122]  S. Ryter,et al.  Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. , 2011, Nature immunology.

[123]  Min Liu,et al.  Parkin Ubiquitinates Drp1 for Proteasome-dependent Degradation , 2011, The Journal of Biological Chemistry.

[124]  Helga E de Vries,et al.  Association of Parkinson disease-related protein PINK1 with Alzheimer disease and multiple sclerosis brain lesions. , 2011, Free radical biology & medicine.

[125]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[126]  J. Tschopp,et al.  A role for mitochondria in NLRP3 inflammasome activation , 2011, Nature.

[127]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[128]  A. Schapira,et al.  Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. , 2010, Human molecular genetics.

[129]  S. Rolland,et al.  New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. , 2010, Current opinion in cell biology.

[130]  M. Birnbaum,et al.  Activation of Akt Is Essential for the Propagation of Mitochondrial Respiratory Stress Signaling and Activation of the Transcriptional Coactivator Heterogeneous Ribonucleoprotein A2 , 2010, Molecular biology of the cell.

[131]  Youngil Lee,et al.  Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore , 2010, Autophagy.

[132]  R. Schwarzenbacher,et al.  Membrane Remodeling Induced by the Dynamin-Related Protein Drp1 Stimulates Bax Oligomerization , 2010, Cell.

[133]  D. Green,et al.  Mitochondria and cell death: outer membrane permeabilization and beyond , 2010, Nature Reviews Molecular Cell Biology.

[134]  R. Gottlieb,et al.  Autophagy in health and disease. 5. Mitophagy as a way of life. , 2010, American journal of physiology. Cell physiology.

[135]  P. Belenguer,et al.  The BH3‐only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms , 2010, EMBO reports.

[136]  L. Scorrano,et al.  Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin , 2010, Cell Death and Differentiation.

[137]  G. Dorn Mitochondrial Pruning by Nix and BNip3: An Essential Function for Cardiac-Expressed Death Factors , 2010, Journal of cardiovascular translational research.

[138]  D. Green,et al.  The BCL-2 family reunion. , 2010, Molecular cell.

[139]  Ivan Dikic,et al.  Nix is a selective autophagy receptor for mitochondrial clearance , 2010, EMBO reports.

[140]  W. Junger,et al.  Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury , 2009, Nature.

[141]  A. M. van der Bliek,et al.  Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells , 2009, The Journal of cell biology.

[142]  Benjamin Drukarch,et al.  Parkinson's disease-associated parkin colocalizes with Alzheimer's disease and multiple sclerosis brain lesions , 2009, Neurobiology of Disease.

[143]  Seamus J. Martin,et al.  Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. , 2009, Molecular cell.

[144]  S. Subramani,et al.  Turnover of Organelles by Autophagy in Yeast This Review Comes from a Themed Issue on Membranes and Organelles Edited Atg9 and Its Cycling System the Cvt Pathway Er-phagy , 2022 .

[145]  Y. Ohsumi,et al.  Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. , 2009, Developmental cell.

[146]  D. Klionsky,et al.  Atg32 is a mitochondrial protein that confers selectivity during mitophagy. , 2009, Developmental cell.

[147]  A. Godzik,et al.  S-Nitrosylation of Drp1 Mediates β-Amyloid-Related Mitochondrial Fission and Neuronal Injury , 2009, Science.

[148]  Michael R. Duchen,et al.  PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death , 2009, Molecular cell.

[149]  K. Nave,et al.  Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons , 2009, The Journal of cell biology.

[150]  G. Dorn,et al.  Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death. , 2008, The Journal of clinical investigation.

[151]  C. Lawless,et al.  Mitochondrial turnover in liver is fast in vivo and is accelerated by dietary restriction: application of a simple dynamic model , 2008, Aging cell.

[152]  B. Levine,et al.  Dual Role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation , 2008, Autophagy.

[153]  S. Cullen,et al.  Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. , 2008, Molecular cell.

[154]  Jie Shen,et al.  Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress , 2008, Proceedings of the National Academy of Sciences.

[155]  H. Sandoval,et al.  Essential role for Nix in autophagic maturation of erythroid cells , 2008, Nature.

[156]  S. Pattingre,et al.  JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. , 2008, Molecular cell.

[157]  H. Shio,et al.  Mitochondrial Morphogenesis, Dendrite Development, and Synapse Formation in Cerebellum Require both Bcl-w and the Glutamate Receptor δ2 , 2008, PLoS genetics.

[158]  Richard J. Flannery,et al.  Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons , 2008, Proceedings of the National Academy of Sciences.

[159]  Chad E Jones,et al.  Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. , 2008, Journal of molecular and cellular cardiology.

[160]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[161]  V. Mootha,et al.  mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex , 2007, Nature.

[162]  S. Strack,et al.  Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death , 2007, EMBO reports.

[163]  A. M. van der Bliek,et al.  Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage , 2007, The Journal of cell biology.

[164]  C. Blackstone,et al.  Cyclic AMP-dependent Protein Kinase Phosphorylation of Drp1 Regulates Its GTPase Activity and Mitochondrial Morphology* , 2007, Journal of Biological Chemistry.

[165]  R. Youle,et al.  The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division , 2007, The Journal of cell biology.

[166]  J. Eisenbart,et al.  Jcb: Article , 2022 .

[167]  Toshihiko Oka,et al.  Mitotic Phosphorylation of Dynamin-related GTPase Drp1 Participates in Mitochondrial Fission* , 2007, Journal of Biological Chemistry.

[168]  B. Salin,et al.  Selective and Non-Selective Autophagic Degradation of Mitochondria in Yeast , 2007, Autophagy.

[169]  Daniel J. Klionsky,et al.  Aup1p, a Yeast Mitochondrial Protein Phosphatase Homolog, Is Required for Efficient Stationary Phase Mitophagy and Cell Survival* , 2007, Journal of Biological Chemistry.

[170]  R. Schnellmann,et al.  Signaling of Mitochondrial Biogenesis following Oxidant Injury* , 2007, Journal of Biological Chemistry.

[171]  P. Marrack,et al.  Bcl-xl does not have to bind Bax to protect T cells from death , 2006, The Journal of experimental medicine.

[172]  R. Youle,et al.  Role of Bax and Bak in mitochondrial morphogenesis , 2006, Nature.

[173]  J. Martinou,et al.  Inhibiting the Mitochondrial Fission Machinery Does Not Prevent Bax/Bak-Dependent Apoptosis , 2006, Molecular and Cellular Biology.

[174]  Colin Adrain,et al.  Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. , 2006, Molecular cell.

[175]  Michael D. Schneider,et al.  Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy , 2005, Cell.

[176]  Zhijian J. Chen,et al.  Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3 , 2005, Cell.

[177]  J. Lemasters Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. , 2005, Rejuvenation research.

[178]  Brian J. Smith,et al.  Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. , 2005, Molecular cell.

[179]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[180]  E. Hirsch,et al.  Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. , 2003, Human molecular genetics.

[181]  S. Frank,et al.  Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis , 2002, The Journal of cell biology.

[182]  G. Dorn,et al.  Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy , 2002, Nature Medicine.

[183]  S. Frank,et al.  The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. , 2001, Developmental cell.

[184]  G. Schatten,et al.  Development: Ubiquitin tag for sperm mitochondria , 1999, Nature.

[185]  Yusuke Nakamura,et al.  Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with Bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability , 1999, Oncogene.

[186]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[187]  D. Steiner Proteolytic processing. , 1986, Science.

[188]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. , 1979, Archives of biochemistry and biophysics.

[189]  The mitochondrial , 2022 .