Solvent nature effect in preparation of perovskites by flame pyrolysis: 2. Alcohols and alcohols + propionic acid mixtures

Abstract The effect of either pure alcohols or alcohols + propionic acid mixtures as solvents for the preparation by flame pyrolysis of a standard LaCoO 3 catalyst, to be employed for the catalytic flameless combustion of methane, has been investigated. All the catalysts proved very active for the mentioned reaction. Low-MW pure alcohols showed however less suitable than alcohols-propionic acid mixtures, leading to lower perovskite phase purity, less particle size homogeneity and lower specific surface area. The high volatility of the solvent seems to be the major cause, together with the improper behaviour of nitrates (forced by solubility reasons) as perovskite metals precursors. However, the addition of propionic acid to the alcohols allowed to use the acetates as precursors and hence to obtain high perovskitic phase purity, high SSA and uniform particle size. Moreover, the increase of combustion enthalpy of the solvent, through the addition of higher-MW alcohols, leading to progressively higher flame temperature, strongly improved the thermal resistance of the catalyst, without lowering catalytic performance.

[1]  G. Migliavacca,et al.  Preparation by flame spray pyrolysis of ABO3±δ catalysts for the flameless combustion of methane , 2006 .

[2]  G. Kauffman Johann Wolfgang Döbereiner’s Feuerzeug , 1999, Platinum Metals Review.

[3]  Lutz Mädler,et al.  Controlled synthesis of nanostructured particles by flame spray pyrolysis , 2002 .

[4]  I. Rossetti,et al.  La2O3 as primer for supporting La0.9Ce0.1CoO3 ± δ on cordieritic honeycombs , 2005 .

[5]  R. Laine,et al.  Yttrium Aluminum Garnet Nanopowders Produced by Liquid-Feed Flame Spray Pyrolysis (LF-FSP) of Metalloorganic Precursors , 2004 .

[6]  I. Rossetti,et al.  Catalytic flameless combustion of methane over perovskites prepared by flame–hydrolysis , 2001 .

[7]  R. W. Morton,et al.  Liquid-Feed Flame Spray Pyrolysis of Metalloorganic and Inorganic Alumina Sources in the Production of Nanoalumina Powders , 2004 .

[8]  P. Pollesel,et al.  TPD-TPR-MS mechanistic study of the ammoxidation of 2-methylpyrazine over Sb-V-Mn-O catalyst , 1991 .

[9]  S. Pratsinis,et al.  Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis , 2005 .

[10]  Gabriele Centi,et al.  Supported palladium catalysts in environmental catalytic technologies for gaseous emissions , 2001 .

[11]  M. Islam,et al.  Oxygen Diffusion in LaMnO3and LaCoO3Perovskite-Type Oxides: A Molecular Dynamics Study , 1996 .

[12]  W. Stark,et al.  Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation , 2003 .

[13]  Sotiris E. Pratsinis,et al.  Zirconia Nanoparticles Made in Spray Flames at High Production Rates , 2004 .

[14]  Abhaya K. Datye,et al.  CATALYTIC COMBUSTION OF METHANE OVER PALLADIUM-BASED CATALYSTS , 2002 .

[15]  Richard M. Laine,et al.  Liquid-Feed Flame Spray Pyrolysis of Nanopowders in the Alumina-Titania System , 2004 .

[16]  Dae Jong Seo,et al.  Formation of ZnO, MgO and NiO Nanoparticles from Aqueous Droplets in Flame Reactor , 2003 .

[17]  J. Mäkelä,et al.  Generation of metal and metal oxide nanoparticles by liquid flame spray process , 2004 .

[18]  Michel Primet,et al.  Complete oxidation of methane at low temperature over noble metal based catalysts: a review , 2002 .

[19]  T. Johannessen,et al.  One-Step Flame Synthesis of an Active Pt/TiO2 Catalyst for SO2 Oxidation—A Possible Alternative to Traditional Methods for Parallel Screening , 2002 .

[20]  W. Stark,et al.  Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: structural properties and enhanced oxygen exchange capacity , 2003 .

[21]  Ilenia Rossetti,et al.  Solvent nature effect in preparation of perovskites by flame-pyrolysis: 1. Carboxylic acids , 2007 .

[22]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[23]  L. Marchetti,et al.  Catalytic combustion of methane over perovskites , 1998 .

[24]  I. Rossetti,et al.  Perovskite catalysts for the catalytic flameless combustion of methane , 2000 .

[25]  I. Rossetti,et al.  Sr1–xAgxTiO3±δ (x=0, 0.1) perovskite-structured catalysts for the flameless combustion of methane , 2005 .

[26]  T. Morse,et al.  A Novel Aerosol Combustion Process for the High Rate Formation of Nanoscale Oxide Particles , 2001 .

[27]  S. Pratsinis,et al.  Evolution of the Morphology of Zinc Oxide/Silica Particles Made by Spray Combustion , 2004 .

[28]  J. Marchal,et al.  A New Y3Al5O12 Phase Produced by Liquid‐Feed Flame Spray Pyrolysis (LF‐FSP) , 2005 .

[29]  S. Pratsinis,et al.  Morphology and deposition of thin yttria-stabilized zirconia films using spray pyrolysis , 2005 .

[30]  W. Stark,et al.  Criteria for Flame‐Spray Synthesis of Hollow, Shell‐Like, or Inhomogeneous Oxides , 2005 .

[31]  A. Zaopo,et al.  Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane , 2005 .

[32]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[33]  K. Takatori,et al.  Fabrication of Zirconia Nanoparticles from Zirconium Propionate by Flame Spray Pyrolysis , 2004 .

[34]  Sano,et al.  A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures , 2000, Science.

[35]  L. Mädler,et al.  Bismuth Oxide Nanoparticles by Flame Spray Pyrolysis , 2004 .

[36]  S. Järås,et al.  Catalytic Materials for High-Temperature Combustion , 1993 .

[37]  S. Pratsinis,et al.  Growth of zirconia particles made by flame spray pyrolysis , 2004 .

[38]  I. Rossetti,et al.  Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion , 2005 .

[39]  Y. Shimizu,et al.  Sol–Gel Synthesis of Perovskite‐Type Lanthanum Manganite Thin Films and Fine Powders Using Metal Acetylacetonate and Poly(vinyl alcohol) , 2005 .

[40]  W. Stark,et al.  Flame-made ceria nanoparticles , 2002 .

[41]  W. Sirignano,et al.  Fluid Dynamics and Transport of Droplets and Sprays: Index , 2010 .

[42]  Sotiris E. Pratsinis,et al.  Flame Aerosol Synthesis of Vanadia–Titania Nanoparticles: Structural and Catalytic Properties in the Selective Catalytic Reduction of NO by NH3 , 2001 .

[43]  L. Bonoldi,et al.  Effect of preparation parameters on SrTiO3±δ catalyst for the flameless combustion of methane , 2005 .

[44]  D. Ferri,et al.  Methane combustion on some perovskite-like mixed oxides , 1998 .

[45]  I. Metcalfe,et al.  Evaluation of perovskite anodes for the complete oxidation of dry methane in solid oxide fuel cells , 1994 .

[46]  M. Blaauw,et al.  Catalytic combustion concept for gas turbines , 1999 .

[47]  S. Pratsinis,et al.  Flame-made Pd/La2O3/Al2O3 nanoparticles: thermal stability and catalytic behavior in methane combustion , 2005 .

[48]  W. Stark,et al.  Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid. , 2003, Chemical communications.