A linearized consistent mixed displacement-pressure formulation for hyperelasticity

We propose a novel mixed displacement-pressure formulation based on an energy functional that takes into account the relation between the pressure and the volumetric energy function. We demonstrate that the proposed two-field mixed displacement-pressure formulation is not only applicable for nearly and truly incompressible cases but also is consistent in the compressible regime. Furthermore, we prove with analytical derivation and numerical results that the proposed two-field formulation is a simplified and efficient alternative for the three-field displacement-pressure-Jacobian formulation for hyperelastic materials whose strain energy density functions are decomposed into deviatoric and volumetric parts.

[1]  Arif Masud,et al.  A Stabilized Mixed Finite Element Method for Nearly Incompressible Elasticity , 2005 .

[2]  C. Kadapa Novel quadratic Bézier triangular and tetrahedral elements using existing mesh generators: Extension to nearly incompressible implicit and explicit elastodynamics in finite strains , 2019, International Journal for Numerical Methods in Engineering.

[3]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[4]  P. Wriggers,et al.  On the stability analysis of hyperelastic boundary value problems using three- and two-field mixed finite element formulations , 2017 .

[5]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[6]  B. Carnes,et al.  A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach , 2016 .

[7]  C. Miehe,et al.  Aspects of the formulation and finite element implementation of large strain isotropic elasticity , 1994 .

[8]  A. McBride,et al.  Computational electro‐elasticity and magneto‐elasticity for quasi‐incompressible media immersed in free space , 2016 .

[9]  Petr Krysl,et al.  Mean‐strain eight‐node hexahedron with optimized energy‐sampling stabilization for large‐strain deformation , 2015 .

[10]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[11]  M. Bercovier Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .

[12]  Erwan Verron,et al.  Comparison of Hyperelastic Models for Rubber-Like Materials , 2006 .

[13]  S. Reese,et al.  Numerical evaluation of discontinuous and nonconforming finite element methods in nonlinear solid mechanics , 2018 .

[14]  Stephen John Connolly,et al.  Higher‐order and higher floating‐point precision numerical approximations of finite strain elasticity moduli , 2019, International Journal for Numerical Methods in Engineering.

[15]  Herbert A. Mang,et al.  3D finite element analysis of rubber‐like materials at finite strains , 1994 .

[16]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[17]  Gerhard Starke,et al.  Least-Squares Galerkin Methods for Parabolic Problems II: The Fully Discrete Case and Adaptive Algorithms , 2001, SIAM J. Numer. Anal..

[18]  M. Shephard,et al.  A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation , 1999 .

[19]  Stefanie Reese,et al.  A new stabilization technique for finite elements in non-linear elasticity , 1999 .

[20]  Kenji Amaya,et al.  F‐bar aided edge‐based smoothed finite element method using tetrahedral elements for finite deformation analysisof nearly incompressible solids , 2017 .

[21]  Mahmood Jabareen,et al.  On the Modeling of Electromechanical Coupling in Electroactive Polymers Using the Mixed Finite Element Formulation , 2015 .

[22]  Peter Wriggers,et al.  Efficient virtual element formulations for compressible and incompressible finite deformations , 2017 .

[23]  Zhigang Suo,et al.  A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers , 2012 .

[24]  Peter Wriggers,et al.  Finite element formulations for large strain anisotropic material with inextensible fibers , 2016, Adv. Model. Simul. Eng. Sci..

[25]  Xianyi Zeng,et al.  A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions , 2017 .

[26]  Andreas Menzel,et al.  Phenomenological modeling of viscous electrostrictive polymers , 2012 .

[27]  Yuki Onishi F-Bar Aided Edge-Based Smoothed Finite Element Method with 4-Node Tetrahedral Elements for Static Large Deformation Elastoplastic Problems , 2019, International Journal of Computational Methods.

[28]  Weimin Han,et al.  On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity , 1997 .

[29]  Paul Steinmann,et al.  More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study , 2013 .

[30]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[31]  D. Peric,et al.  Subdivision based mixed methods for isogeometric analysis of linear and nonlinear nearly incompressible materials , 2016 .

[32]  Peter Wriggers,et al.  On enhanced strain methods for small and finite deformations of solids , 1996 .

[33]  Yuri Bazilevs,et al.  Treatment of near-incompressibility in meshfree and immersed-particle methods , 2020, Computational Particle Mechanics.

[34]  S. Doll,et al.  On the Development of Volumetric Strain Energy Functions , 2000 .

[35]  Thomas A. Manteuffel,et al.  First-Order System Least Squares for Geometrically Nonlinear Elasticity , 2006, SIAM J. Numer. Anal..

[36]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[37]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[38]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[39]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[40]  David S. Watkins,et al.  Fundamentals of Matrix Computations: Watkins/Fundamentals of Matrix Computations , 2005 .

[41]  Gerhard Starke,et al.  Least-Squares Galerkin Methods for Parabolic Problems I: Semidiscretization in Time , 2001, SIAM J. Numer. Anal..

[42]  Thao D. Nguyen,et al.  Viscoelastic effects on electromechanical instabilities in dielectric elastomers , 2013 .

[43]  Manuel Tur,et al.  A modified perturbed Lagrangian formulation for contact problems , 2015 .

[44]  Rogelio Ortigosa,et al.  A computational framework for large strain nearly and truly incompressible electromechanics based on convex multi-variable strain energies , 2016 .

[45]  D. Peric,et al.  NURBS based least‐squares finite element methods for fluid and solid mechanics , 2015 .

[46]  Nicholas I. M. Gould,et al.  A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations , 2007, TOMS.

[47]  P. Krysl,et al.  Mean‐strain 10‐node tetrahedron with energy‐sampling stabilization for nonlinear deformation , 2017 .

[48]  Harold S. Park,et al.  A staggered explicit–implicit finite element formulation for electroactive polymers , 2018, Computer Methods in Applied Mechanics and Engineering.

[49]  Alexander Düster,et al.  The finite cell method for nearly incompressible finite strain plasticity problems with complex geometries , 2018, Comput. Math. Appl..

[50]  J. C. Simo,et al.  A perturbed Lagrangian formulation for the finite element solution of contact problems , 1985 .

[51]  K. Moerman,et al.  Novel hyperelastic models for large volumetric deformations , 2019, International Journal of Solids and Structures.

[52]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[53]  P. Steinmann,et al.  Numerical modelling of nonlinear thermo-electro-elasticity , 2017 .

[54]  J. C. Simo,et al.  Penalty function formulations for incompressible nonlinear elastostatics , 1982 .

[55]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[56]  P. Steinmann,et al.  Numerical modeling of thermo-electro-viscoelasticity with field-dependent material parameters , 2018, International Journal of Non-Linear Mechanics.

[57]  William M. Coombs,et al.  Overcoming volumetric locking in material point methods , 2018 .

[58]  H. Dal A quasi‐incompressible and quasi‐inextensible element formulation for transversely isotropic materials , 2018, International Journal for Numerical Methods in Engineering.

[59]  Hari S. Viswanathan,et al.  A non-locking composite tetrahedron element for the combined finite discrete element method , 2016 .

[60]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[61]  E. A. S. Neto,et al.  F‐bar‐based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking , 2005 .

[62]  Peter Wriggers,et al.  An improved EAS brick element for finite deformation , 2010 .

[63]  C. Kadapa Mixed Galerkin and Least-Squares formulations for Isogeometric analysis , 2014 .

[64]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[65]  Peter Wriggers,et al.  An extension of assumed stress finite elements to a general hyperelastic framework , 2019, Adv. Model. Simul. Eng. Sci..

[66]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[67]  P. Steinmann,et al.  Experimental and numerical investigations of the electro-viscoelastic behavior of VHB 4905TM , 2019, European Journal of Mechanics - A/Solids.

[68]  G. R. Liu,et al.  A Locking-Free Face-Based S-FEM via Averaging Nodal Pressure using 4-Nodes Tetrahedrons for 3D Explicit Dynamics and Quasi-statics , 2018, International Journal of Computational Methods.

[69]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[70]  Donald Mackenzie,et al.  Isotropic hyperelasticity in principal stretches: explicit elasticity tensors and numerical implementation , 2019, Computational Mechanics.

[71]  Hamid Reza Bayat,et al.  A low-order locking-free hybrid discontinuous Galerkin element formulation for large deformations , 2017 .

[72]  Antonio Huerta,et al.  A superconvergent hybridisable discontinuous Galerkin method for linear elasticity , 2018, International Journal for Numerical Methods in Engineering.

[73]  Paul Steinmann,et al.  Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data , 2012 .

[74]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[75]  Antonio Huerta,et al.  A locking-free face-centred finite volume (FCFV) method for linear elastostatics , 2018, Computers & Structures.

[76]  R. Codina,et al.  Mixed stabilized finite element methods in nonlinear solid mechanics: Part I: Formulation , 2010 .

[77]  Paul Steinmann,et al.  Hyperelastic analysis based on a polygonal finite element method , 2018 .

[78]  Nabil H. Abboud,et al.  Elastoplasticity with linear tetrahedral elements: A variational multiscale method , 2018 .

[79]  C. A. Saracibar,et al.  A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations , 2002 .

[80]  M. Jabareen,et al.  A reduced mixed finite-element formulation for modeling the viscoelastic response of electro-active polymers at finite deformation , 2018, Mathematics and Mechanics of Solids.

[81]  Mokarram Hossain,et al.  Eight-chain and full-network models and their modified versions for rubber hyperelasticity: a comparative study , 2015 .

[82]  Stefan Hartmann,et al.  Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .

[83]  C. Kadapa Novel quadratic Bézier triangular and tetrahedral elements using existing mesh generators: Applications to linear nearly incompressible elastostatics and implicit and explicit elastodynamics , 2018, International Journal for Numerical Methods in Engineering.

[84]  Sergio Pissanetzky,et al.  Sparse Matrix Technology , 1984 .

[85]  Hamid Reza Bayat,et al.  On the use of reduced integration in combination with discontinuous Galerkin discretization: application to volumetric and shear locking problems , 2018, Advanced Modeling and Simulation in Engineering Sciences.

[86]  Thomas J. R. Hughes,et al.  A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation , 1988 .

[87]  E. A. de Souza Neto,et al.  An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains , 2004 .

[88]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .