Low-cost layered oxide cathode involving cationic and anionic redox with a complete solid-solution sodium-storage behavior

[1]  Yong‐Mook Kang,et al.  Spinel/Post-Spinel Engineering on Layered Oxide Cathodes for Sodium-Ion Batteries , 2021, eScience.

[2]  C. Cao,et al.  Tuning oxygen redox chemistry of P2-type manganese-based oxide cathode via dual Cu and Co substitution for sodium-ion batteries , 2021 .

[3]  Yanbin Shen,et al.  Achieving highly reversible and fast sodium storage of Na4VMn(PO4)3/C-rGO composite with low-fraction rGO via spray-drying technique , 2021 .

[4]  Yong Yang,et al.  Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries , 2021, Nature Communications.

[5]  Zonghai Chen,et al.  Role of Lithium Doping in P2-Na0.67Ni0.33Mn0.67O2 for Sodium-Ion Batteries , 2021, Chemistry of materials : a publication of the American Chemical Society.

[6]  Guoqiang Zou,et al.  Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery , 2021, Rare Metals.

[7]  Chao Li,et al.  Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR , 2021 .

[8]  Tongchao Liu,et al.  Whole‐Voltage‐Range Oxygen Redox in P2‐Layered Cathode Materials for Sodium‐Ion Batteries , 2021, Advanced materials.

[9]  Yongchang Liu,et al.  Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries , 2021 .

[10]  J. L. Amo,et al.  Sodium manganese-rich layered oxides: Potential candidates as positive electrode for Sodium-ion batteries , 2021 .

[11]  Xiqian Yu,et al.  Insights of the anionic redox in P2–Na0.67Ni0.33Mn0.67O2 , 2020 .

[12]  Chenglong Zhao,et al.  Rational design of layered oxide materials for sodium-ion batteries , 2020, Science.

[13]  Yongchang Liu,et al.  A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries , 2020, Science China Chemistry.

[14]  M. Winter,et al.  Operando X-ray absorption spectroscopy investigations on NaxNi1/3Fe1/3Mn1/3O2 positive electrode materials for sodium and sodium ion batteries , 2020, Journal of Power Sources.

[15]  Chenghao Yang,et al.  Dual‐Strategy of Cation‐Doping and Nanoengineering Enables Fast and Stable Sodium‐Ion Storage in a Novel Fe/Mn‐Based Layered Oxide Cathode , 2020, Advanced science.

[16]  Huan Ye,et al.  Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries , 2020 .

[17]  Xiao‐Qing Yang,et al.  A Co‐ and Ni‐Free P2/O3 Biphasic Lithium Stabilized Layered Oxide for Sodium‐Ion Batteries and its Cycling Behavior , 2020, Advanced Functional Materials.

[18]  J. Janek,et al.  Side by Side Battery Technologies with Lithium‐Ion Based Batteries , 2020, Advanced Energy Materials.

[19]  Chenglong Zhao,et al.  Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes , 2020, Journal of the American Chemical Society.

[20]  Yan Yu,et al.  Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. , 2020, Chemical Society reviews.

[21]  Yang Ren,et al.  Ultralow‐Strain Zn‐Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage , 2020, Advanced Functional Materials.

[22]  P. He,et al.  Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2 , 2019, ACS Energy Letters.

[23]  P. He,et al.  Manganese‐Based Na‐Rich Materials Boost Anionic Redox in High‐Performance Layered Cathodes for Sodium‐Ion Batteries , 2019, Advanced materials.

[24]  Meilin Liu,et al.  Lithium-Doping Stabilized High-Performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 Cathode for Sodium Ion Batteries. , 2019, Journal of the American Chemical Society.

[25]  Xiao-dong Guo,et al.  High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies , 2019, Advanced Energy Materials.

[26]  Xiao‐Qing Yang,et al.  Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries. , 2019, Journal of the American Chemical Society.

[27]  Mihui Park,et al.  Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries , 2019, Nature Communications.

[28]  K. Kang,et al.  Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries , 2018, Advanced materials.

[29]  Yu‐Guo Guo,et al.  Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 Cathode Material with Suppressed P2-O2 Phase Transition toward High-Performance Sodium-Ion Battery. , 2018, ACS applied materials & interfaces.

[30]  Zonghai Chen,et al.  Identifying the Structural Evolution of the Sodium Ion Battery Na2 FePO4 F Cathode. , 2018, Angewandte Chemie.

[31]  C. Delmas,et al.  Sodium and Sodium‐Ion Batteries: 50 Years of Research , 2018 .

[32]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[33]  Zonghai Chen,et al.  Insight into Ca-Substitution Effects on O3-Type NaNi1/3 Fe1/3 Mn1/3 O2 Cathode Materials for Sodium-Ion Batteries Application. , 2018, Small.

[34]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[35]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[36]  J. L. Amo,et al.  Layered P2–O3 sodium-ion cathodes derived from earth abundant elements , 2018 .

[37]  P. He,et al.  Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. , 2018, Science bulletin.

[38]  P. Bruce,et al.  Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. , 2018, Nature chemistry.

[39]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[40]  Yong‐Sheng Hu,et al.  Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode , 2017 .

[41]  L. Nazar,et al.  Structural Evolution and Redox Processes Involved in the Electrochemical Cycling of P2–Na0.67[Mn0.66Fe0.20Cu0.14]O2 , 2017 .

[42]  Wenhao Ren,et al.  Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching. , 2017, Nano letters.

[43]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[44]  Y. Meng,et al.  Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries. , 2017, Journal of the American Chemical Society.

[45]  Chuan Wu,et al.  Enhanced Sodium Ion Storage Behavior of P2-Type Na(2/3)Fe(1/2)Mn(1/2)O2 Synthesized via a Chelating Agent Assisted Route. , 2016, ACS applied materials & interfaces.

[46]  Yong-Sheng Hu,et al.  Prototype Sodium‐Ion Batteries Using an Air‐Stable and Co/Ni‐Free O3‐Layered Metal Oxide Cathode , 2015, Advanced materials.

[47]  L. Nazar,et al.  Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability , 2015 .

[48]  G. Ceder,et al.  High‐Performance P2‐Type Na2/3(Mn1/2Fe1/4Co1/4)O2 Cathode Material with Superior Rate Capability for Na‐Ion Batteries , 2015 .

[49]  S. Dou,et al.  Interplay between Electrochemistry and Phase Evolution of the P2-type Nax(Fe1/2Mn1/2)O2 Cathode for Use in Sodium-Ion Batteries , 2015 .

[50]  W. Park,et al.  Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries , 2015 .

[51]  A. Tanaka,et al.  Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries , 2014 .

[52]  S. Dou,et al.  Electrospun P2-type Na(2/3)(Fe(1/2)Mn(1/2))O2 hierarchical nanofibers as cathode material for sodium-ion batteries. , 2014, ACS applied materials & interfaces.

[53]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2–Nax[LiyNizMn1–y–z]O2(0 , 2014 .

[54]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[55]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .