Numerical valuation of options with jumps in the underlying

A jump-diffusion model for a single-asset market is considered. Under this assumption the value of a European contingency claim satisfies a general partial integro-differential equation (PIDE). The equation is localized and discretized in space using finite differences and finite elements and in time by the second order backward differentiation formula (BDF2). The resulting system is solved by an iterative method based on a simple splitting of the matrix. Using the fast Fourier transform, the amount of work per iteration may be reduced to O(n log2 n) and only O(n) entries need to be stored for each time level. Numerical results showing the quadratic convergence of the methods are given for Merton's model and Kou's model.

[1]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[2]  Ken-iti Sato Basic Results on Lévy Processes , 2001 .

[3]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[4]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[5]  T. Coleman,et al.  Reconstructing the Unknown Local Volatility Function , 1999 .

[6]  Sanjiv Ranjan Das,et al.  Exact solutions for bond and option prices with systematic jump risk , 1996 .

[7]  Christoph Schwab,et al.  Fast deterministic pricing of options on Lévy driven assets , 2002 .

[8]  Bruno Dupire Pricing with a Smile , 1994 .

[9]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[10]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[11]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[12]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[13]  G. Meyer The numerical valuation of options with underlying jumps. , 1998 .

[14]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[15]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[16]  E. Eberlein Application of Generalized Hyperbolic Lévy Motions to Finance , 2001 .

[17]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[18]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[19]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[20]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[21]  S. Taylor,et al.  LÉVY PROCESSES (Cambridge Tracts in Mathematics 121) , 1998 .

[22]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[23]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[26]  Roberto Natalini,et al.  Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory , 2004, Numerische Mathematik.

[27]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[28]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[29]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[30]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[31]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[32]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.