Approximate Moore Graphs are good expanders

Abstract We revisit the classical question of the relationship between the diameter of a graph and its expansion properties. One direction is well understood: expander graphs exhibit essentially the lowest possible diameter. We focus on the reverse direction, showing that “sufficiently large” graphs of fixed diameter and degree must be “good” expanders. We prove this statement for various definitions of “sufficiently large” (multiplicative/additive factor from the largest possible size), for different forms of expansion (edge, vertex, and spectral expansion), and for both directed and undirected graphs. A recurring theme is that the lower the diameter of the graph and (more importantly) the larger its size, the better the expansion guarantees. Aside from inherent theoretical interest, our motivation stems from the domain of network design. Both low-diameter networks and expanders are prominent approaches to designing high-performance networks in parallel computing, HPC, datacenter networking, and beyond. Our results establish that these two approaches are, in fact, inextricably intertwined. We leave the reader with many intriguing questions for future research.

[1]  William J. Dally,et al.  Cost-Efficient Dragonfly Topology for Large-Scale Systems , 2009, IEEE Micro.

[2]  William J. Dally,et al.  Technology-Driven, Highly-Scalable Dragonfly Topology , 2008, 2008 International Symposium on Computer Architecture.

[3]  Nathan Linial,et al.  On metric Ramsey-type phenomena , 2004 .

[4]  J. Sirán,et al.  Moore Graphs and Beyond: A survey of the Degree/Diameter Problem , 2013 .

[5]  Charles Delorme,et al.  The Spectrum of de Bruijn and Kautz Graphs , 1998, Eur. J. Comb..

[6]  Abraham Lempel,et al.  On a Homomorphism of the de Bruijn Graph and its Applications to the Design of Feedback Shift Registers , 1970, IEEE Transactions on Computers.

[7]  Dhiraj K. Pradhan,et al.  Fault-Tolerant Multiprocessor Link and Bus Network Architectures , 1994, IEEE Transactions on Computers.

[8]  Simon Arnold Kassing,et al.  Static Yet Flexible: Expander Data Center Network Fabrics , 2017 .

[9]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[10]  A. Nilli On the second eigenvalue of a graph , 1991 .

[11]  K. Hashimoto Zeta functions of finite graphs and representations of p-adic groups , 1989 .

[12]  Nathan Linial,et al.  Girth and euclidean distortion , 2002, STOC '02.

[13]  Ankit Singla,et al.  High Throughput Data Center Topology Design , 2013, NSDI.

[14]  Charles Delorme,et al.  Grands Graphes de Degré et Diamètre Donnés , 1985, Eur. J. Comb..

[15]  Charles Delorme,et al.  Large bipartite graphs with given degree and diameter , 1985, J. Graph Theory.

[16]  H. Fredricksen A Survey of Full Length Nonlinear Shift Register Cycle Algorithms , 1982 .

[17]  R. Singleton On Minimal graphs of maximum even girth , 1966 .

[18]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[19]  Torsten Hoefler,et al.  The PERCS High-Performance Interconnect , 2010, 2010 18th IEEE Symposium on High Performance Interconnects.

[20]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[21]  Ankit Singla,et al.  Jellyfish: Networking Data Centers Randomly , 2011, NSDI.

[22]  Michael Dinitz,et al.  Large Low-Diameter Graphs are Good Expanders , 2018, ESA.

[23]  Patrick Solé,et al.  The second eigenvalue of regular graphs of given girth , 1992, J. Comb. Theory, Ser. B.

[24]  Eduardo Alberto Canale,et al.  Asymptotically large (Delta, D)-graphs , 2005, Discret. Appl. Math..

[25]  J. A.,et al.  On Moore Graphs with Diameters 2 and 3 , 2022 .

[26]  Michael Dinitz,et al.  Xpander: Towards Optimal-Performance Datacenters , 2016, CoNEXT.

[27]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[28]  Michael Dinitz,et al.  Explicit Expanding Expanders , 2015, ESA.

[29]  A CanaleEduardo,et al.  Asymptotically large (Δ, D)-graphs , 2005 .

[30]  Tatsuro Ito,et al.  Regular graphs with excess one , 1981, Discret. Math..

[31]  Yunhao Liu,et al.  Expandable and Cost-Effective Network Structures for Data Centers Using Dual-Port Servers , 2013, IEEE Transactions on Computers.

[32]  Samuel Dolinar,et al.  A VLSI decomposition of the deBruijn graph , 1989, JACM.

[33]  Bernard Elspas,et al.  THEORY OF CELLULAR LOGIC NETWORKS AND MACHINES. , 1968 .

[34]  Xiao Zhang,et al.  Localization and centrality in networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Henri Casanova,et al.  A case for random shortcut topologies for HPC interconnects , 2012, 2012 39th Annual International Symposium on Computer Architecture (ISCA).

[36]  William J. Dally,et al.  Flattened butterfly: a cost-efficient topology for high-radix networks , 2007, ISCA '07.

[37]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[38]  S. Louis Hakimi,et al.  Fault-Tolerant Routing in DeBruijn Comrnunication Networks , 1985, IEEE Transactions on Computers.

[39]  N. Alon,et al.  Non-backtracking random walks mix faster , 2006, math/0610550.

[40]  Torsten Hoefler,et al.  Slim Fly: A Cost Effective Low-Diameter Network Topology , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[41]  Lenka Zdeborová,et al.  Percolation on sparse networks , 2014, Physical review letters.

[42]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[43]  R. Jajcay,et al.  On a problem of Bermond and Bollobás , 2018, 1803.07501.

[44]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  Jean-Claude Bermond,et al.  Large fault-tolerant interconnection networks , 1989, Graphs Comb..

[47]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[48]  Elchanan Mossel,et al.  Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.

[49]  Brendan D. McKay,et al.  A Note on Large Graphs of Diameter Two and Given Maximum Degree, , 1998, J. Comb. Theory, Ser. B.

[50]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.