Approximate Moore Graphs are good expanders
暂无分享,去创建一个
[1] William J. Dally,et al. Cost-Efficient Dragonfly Topology for Large-Scale Systems , 2009, IEEE Micro.
[2] William J. Dally,et al. Technology-Driven, Highly-Scalable Dragonfly Topology , 2008, 2008 International Symposium on Computer Architecture.
[3] Nathan Linial,et al. On metric Ramsey-type phenomena , 2004 .
[4] J. Sirán,et al. Moore Graphs and Beyond: A survey of the Degree/Diameter Problem , 2013 .
[5] Charles Delorme,et al. The Spectrum of de Bruijn and Kautz Graphs , 1998, Eur. J. Comb..
[6] Abraham Lempel,et al. On a Homomorphism of the de Bruijn Graph and its Applications to the Design of Feedback Shift Registers , 1970, IEEE Transactions on Computers.
[7] Dhiraj K. Pradhan,et al. Fault-Tolerant Multiprocessor Link and Bus Network Architectures , 1994, IEEE Transactions on Computers.
[8] Simon Arnold Kassing,et al. Static Yet Flexible: Expander Data Center Network Fabrics , 2017 .
[9] F. Leighton,et al. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .
[10] A. Nilli. On the second eigenvalue of a graph , 1991 .
[11] K. Hashimoto. Zeta functions of finite graphs and representations of p-adic groups , 1989 .
[12] Nathan Linial,et al. Girth and euclidean distortion , 2002, STOC '02.
[13] Ankit Singla,et al. High Throughput Data Center Topology Design , 2013, NSDI.
[14] Charles Delorme,et al. Grands Graphes de Degré et Diamètre Donnés , 1985, Eur. J. Comb..
[15] Charles Delorme,et al. Large bipartite graphs with given degree and diameter , 1985, J. Graph Theory.
[16] H. Fredricksen. A Survey of Full Length Nonlinear Shift Register Cycle Algorithms , 1982 .
[17] R. Singleton. On Minimal graphs of maximum even girth , 1966 .
[18] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[19] Torsten Hoefler,et al. The PERCS High-Performance Interconnect , 2010, 2010 18th IEEE Symposium on High Performance Interconnects.
[20] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[21] Ankit Singla,et al. Jellyfish: Networking Data Centers Randomly , 2011, NSDI.
[22] Michael Dinitz,et al. Large Low-Diameter Graphs are Good Expanders , 2018, ESA.
[23] Patrick Solé,et al. The second eigenvalue of regular graphs of given girth , 1992, J. Comb. Theory, Ser. B.
[24] Eduardo Alberto Canale,et al. Asymptotically large (Delta, D)-graphs , 2005, Discret. Appl. Math..
[25] J. A.,et al. On Moore Graphs with Diameters 2 and 3 , 2022 .
[26] Michael Dinitz,et al. Xpander: Towards Optimal-Performance Datacenters , 2016, CoNEXT.
[27] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[28] Michael Dinitz,et al. Explicit Expanding Expanders , 2015, ESA.
[29] A CanaleEduardo,et al. Asymptotically large (Δ, D)-graphs , 2005 .
[30] Tatsuro Ito,et al. Regular graphs with excess one , 1981, Discret. Math..
[31] Yunhao Liu,et al. Expandable and Cost-Effective Network Structures for Data Centers Using Dual-Port Servers , 2013, IEEE Transactions on Computers.
[32] Samuel Dolinar,et al. A VLSI decomposition of the deBruijn graph , 1989, JACM.
[33] Bernard Elspas,et al. THEORY OF CELLULAR LOGIC NETWORKS AND MACHINES. , 1968 .
[34] Xiao Zhang,et al. Localization and centrality in networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[35] Henri Casanova,et al. A case for random shortcut topologies for HPC interconnects , 2012, 2012 39th Annual International Symposium on Computer Architecture (ISCA).
[36] William J. Dally,et al. Flattened butterfly: a cost-efficient topology for high-radix networks , 2007, ISCA '07.
[37] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[38] S. Louis Hakimi,et al. Fault-Tolerant Routing in DeBruijn Comrnunication Networks , 1985, IEEE Transactions on Computers.
[39] N. Alon,et al. Non-backtracking random walks mix faster , 2006, math/0610550.
[40] Torsten Hoefler,et al. Slim Fly: A Cost Effective Low-Diameter Network Topology , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.
[41] Lenka Zdeborová,et al. Percolation on sparse networks , 2014, Physical review letters.
[42] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[43] R. Jajcay,et al. On a problem of Bermond and Bollobás , 2018, 1803.07501.
[44] Norman Biggs. Algebraic Graph Theory: Index , 1974 .
[45] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[46] Jean-Claude Bermond,et al. Large fault-tolerant interconnection networks , 1989, Graphs Comb..
[47] B. Bollobás,et al. Extremal Graph Theory , 2013 .
[48] Elchanan Mossel,et al. Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.
[49] Brendan D. McKay,et al. A Note on Large Graphs of Diameter Two and Given Maximum Degree, , 1998, J. Comb. Theory, Ser. B.
[50] W. G. Brown. On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.