Redox‐Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale

Resistive switching memories (RRAMs) are an emerging research field, which is currently of focused interest for both the interdisciplinary scientific community and industry. RRAMs are nano-electrochemical systems with great potential as a disruptive technology for the semiconductor industry as well as for a number of applications such as memory, logic and analog circuits, memristive operations, neuromorphic applications and computing. The present review aims to present the current state-of-the-art knowledge on redox-based resistive switching RRAMs, highlighting the role of the interfaces, discussing the electrochemical kinetics during formation of nanofilaments, and to relate them to the more fundamental issue of microscopic description of electrochemical processes at the atomic scale.

[1]  Dirk Wouters,et al.  Thermal-stability optimization of Al2O3/Cu–Te based conductive-bridging random access memory systems , 2013 .

[2]  Ilia Valov,et al.  Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories , 2013, Journal of Solid State Electrochemistry.

[3]  Monica Morales-Masis,et al.  Towards a quantitative description of solid electrolyte conductance switches. , 2010, Nanoscale.

[4]  R. Waser,et al.  Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. , 2012, Nanoscale.

[5]  F. Zeng,et al.  Conductance quantization in oxygen-anion-migration-based resistive switching memory devices , 2013 .

[6]  Takuro Tamura,et al.  Rate-Limiting Processes Determining the Switching Time in a Ag2S Atomic Switch , 2010 .

[7]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[8]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[9]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[10]  Thomas Bredow,et al.  Electrochemical activation of molecular nitrogen at the Ir/YSZ interface. , 2011, Physical chemistry chemical physics : PCCP.

[11]  S. Balatti,et al.  Evidence for Voltage-Driven Set/Reset Processes in Bipolar Switching RRAM , 2012, IEEE Transactions on Electron Devices.

[12]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[13]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[14]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[15]  Stephen R. Elliott,et al.  A comparative study of silver photodoping in chalcogenide films by means of extended X-ray absorption fine structure and kinetics measurements , 1988 .

[16]  Wei Lu,et al.  Oxide heterostructure resistive memory. , 2013, Nano letters.

[17]  Byung Joon Choi,et al.  Cause and prevention of moisture-induced degradation of resistance random access memory nanodevices. , 2013, ACS nano.

[18]  J. Yang,et al.  Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High‐Performance Memristor , 2011, Advanced materials.

[19]  T. Sakamoto,et al.  A nonvolatile programmable solid-electrolyte nanometer switch , 2004, IEEE Journal of Solid-State Circuits.

[20]  Véronique Picard,et al.  Correction: Corrigendum: Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels , 2013, Nature Communications.

[21]  Masakazu Aono,et al.  Rate-limiting processes in the fast SET operation of a gapless-type Cu-Ta2O5 atomic switch , 2013 .

[22]  Joachim Mayer,et al.  Structural investigations of Pt∕TiOx electrode stacks for ferroelectric thin film devices , 2006 .

[23]  Rainer Waser,et al.  Bond nature of active metal ions in SiO2-based electrochemical metallization memory cells. , 2013, Nanoscale.

[24]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[25]  Yoshio Nishi,et al.  Role of Hydrogen Ions in TiO2-Based Memory Devices , 2011 .

[26]  Rainer Waser,et al.  Redox processes in silicon dioxide thin films using copper microelectrodes , 2011 .

[27]  D. Lang,et al.  Oxidation mechanism of ionic transport of copper in SiO2 dielectrics , 2004 .

[28]  Feng Miao,et al.  Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current , 2011, Nanotechnology.

[29]  Amit Kumar,et al.  Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes , 2013, Scientific Reports.

[30]  Jan van den Hurk,et al.  Nanobatteries in redox-based resistive switches require extension of memristor theory , 2013, Nature Communications.

[31]  Sang-jun Choi,et al.  In Situ Observation of Voltage‐Induced Multilevel Resistive Switching in Solid Electrolyte Memory , 2011, Advanced materials.

[32]  Qi Liu,et al.  Real‐Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide‐Electrolyte‐Based ReRAM , 2012, Advanced materials.

[33]  R. Waser,et al.  Effects of Moisture on the Switching Characteristics of Oxide‐Based, Gapless‐Type Atomic Switches , 2012 .

[34]  R. Waser,et al.  Thermochemical resistive switching: materials, mechanisms, and scaling projections , 2011 .

[35]  Rainer Waser,et al.  Chemically-inactive interfaces in thin film Ag/AgI systems for resistive switching memories , 2013, Scientific Reports.

[36]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[37]  L. Goux,et al.  Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device , 2012 .

[38]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[39]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[40]  Fei Zeng,et al.  Dynamic Processes of Resistive Switching in Metallic Filament-Based Organic Memory Devices , 2012 .

[41]  Rainer Waser,et al.  Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells. , 2009, Physical chemistry chemical physics : PCCP.

[42]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[43]  Rainer Waser,et al.  Switching kinetics of electrochemical metallization memory cells. , 2013, Physical chemistry chemical physics : PCCP.

[44]  Masakazu Aono,et al.  Switching kinetics of a Cu2S-based gap-type atomic switch , 2011, Nanotechnology.

[45]  Yoji Kawamoto,et al.  Dc Conductivity of Ge‐S‐Ag and As‐S‐Ag Glasses , 1974 .

[46]  Horton,et al.  Quenching of metal sticking by photo-oxidation of an amorphous semiconductor: Zn on GeS2. , 1995, Physical review. B, Condensed matter.

[47]  David J. Gates,et al.  The response of some nucleation/growth processes to triangular scans of potential , 1983 .

[48]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .

[49]  X. Bai,et al.  Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. , 2010, ACS nano.

[50]  R. Waser,et al.  Quantum conductance and switching kinetics of AgI-based microcrossbar cells , 2012, Nanotechnology.

[51]  Shimeng Yu,et al.  Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) , 2011, IEEE Transactions on Electron Devices.

[52]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[53]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[54]  Rainer Waser,et al.  Direct Observation of Charge Transfer in Solid Electrolyte for Electrochemical Metallization Memory , 2012, Advanced materials.

[55]  Wilfried Vandervorst,et al.  Influence of carbon alloying on the thermal stability and resistive switching behavior of copper-telluride based CBRAM cells. , 2013, ACS applied materials & interfaces.

[56]  Norbert Hampp,et al.  AFM tip-induced metal particle formation on laser-structured and on unstructured surfaces of solid-state ion conductors , 2013 .

[57]  Rainer Waser,et al.  The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy , 2009 .

[58]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part I: Experimental Study , 2012, IEEE Transactions on Electron Devices.

[59]  C. Cagli,et al.  Quantum-size effects in hafnium-oxide resistive switching , 2013 .

[60]  M. Kozicki,et al.  Cation-based resistance change memory , 2013 .

[61]  M. Kozicki,et al.  Quantized Conductance in $\hbox{Ag/GeS}_{2}/\hbox{W}$ Conductive-Bridge Memory Cells , 2012, IEEE Electron Device Letters.

[62]  Jürgen Fleig,et al.  Current-Voltage Characteristics of Platinum Model Electrodes on Yttria-Stabilized Zirconia , 2012 .

[63]  M. Fontana,et al.  Ionic conductivity (Ag+) in AgGeSe glasses , 2005 .

[64]  Doo Seok Jeong,et al.  Titanium dioxide thin films for next-generation memory devices , 2013 .

[65]  R. Waser,et al.  Generic relevance of counter charges for cation-based nanoscale resistive switching memories. , 2013, ACS nano.

[66]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[67]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[68]  Qi Liu,et al.  In situ observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory , 2013 .

[69]  Daniele Ielmini,et al.  Nanowire-based resistive switching memories: devices, operation and scaling , 2013 .

[70]  I-Wei Chen,et al.  Effects of moisture barriers on resistive switching in Pt-dispersed SiO2 nanometallic thin films , 2013 .

[71]  Ilia Valov,et al.  Kinetic studies of the electrochemical nitrogen reduction and incorporation into yttria stabilized zirconia , 2006 .

[72]  R. Waser,et al.  TiO2—a prototypical memristive material , 2011, Nanotechnology.

[73]  Richard M. Lambert,et al.  Surface photo-oxidation and Ag deposition on amorphous GeS2 , 1993 .

[74]  Seung Jin Yeom,et al.  Platinum(100) hillock growth in a Pt/Ti electrode stack for ferroelectric random access memory , 2003 .

[75]  D. Ielmini,et al.  Impact of Electrode Materials on Resistive-Switching Memory Programming , 2009, IEEE Electron Device Letters.

[76]  R. Waser,et al.  Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. , 2012, Nature materials.

[77]  T. Hasegawa,et al.  Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch , 2012, Nanotechnology.

[78]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[79]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[80]  Byung Joon Choi,et al.  A physical model of switching dynamics in tantalum oxide memristive devices , 2013 .

[81]  Masakazu Aono,et al.  Temperature effects on the switching kinetics of a Cu–Ta2O5-based atomic switch , 2011, Nanotechnology.

[82]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[83]  R. Waser,et al.  On the stochastic nature of resistive switching in Cu doped Ge0.3Se0.7 based memory devices , 2011 .

[84]  Lih-Juann Chen,et al.  Dynamic evolution of conducting nanofilament in resistive switching memories. , 2013, Nano letters.

[85]  T. Hasegawa,et al.  Controlling the Synaptic Plasticity of a Cu2S Gap‐Type Atomic Switch , 2012 .

[86]  P. Moir,et al.  The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation , 1987 .

[87]  Rainer Waser,et al.  On the origin of bistable resistive switching in metal organic charge transfer complex memory cells , 2007 .

[88]  T. Hasegawa,et al.  Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von‐Neumann Computers , 2012, Advanced materials.

[89]  K. Terabe,et al.  Forming and switching mechanisms of a cation-migration-based oxide resistive memory , 2010, Nanotechnology.

[90]  C. Hwang,et al.  Resistive switching memory: observations with scanning probe microscopy. , 2011, Nanoscale.

[91]  Joachim Maier Thermodynamics of Nanosystems with a Special View to Charge Carriers , 2009 .

[92]  Daniele Ielmini,et al.  Switching of nanosized filaments in NiO by conductive atomic force microscopy , 2012 .