Technische Entwicklung, Bau und Test von Brenngaserzeugungskomponenten

Unter dem Begriff „Brenngaserzeugung“ wird die Umwandlung von Kraftstoffen, die aus sehr unterschiedlichen Kohlenwasserstoffen zusammengesetzt sein konnen, in ein Gasgemisch verstanden, das zu einem erheblichen Anteil aus Wasserstoff besteht und in die Anode einer Brennstoffzelle geleitet werden kann. Es werden die drei wesentlichen Komponenten der Brenngaserzeugung vorgestellt. Der autotherme Reformer wandelt den flussigen Kraftstoff in einem katalytischen Prozess zusammen mit Wasserdampf und Luft in ein wasserstoffreiches Gasgemisch, das sogenannte Reformat, um. Der Wasser-Gas-Shift Reaktor hat die Funktion, die Konzentration an Kohlenmonoxid im Reformat deutlich zu verringern. Zu hohe Konzentrationen an Kohlenmonoxid im Eduktgasstrom der Brennstoffzelle fuhren zu einer adsorptiven Vergiftung der katalytisch aktiven Zentren in der Anode der Brennstoffzelle. Der katalytische Brenner hat zwei wesentliche Funktionen. Zum einen werden in seinem katalytischen Teil die brennbaren Komponenten zu Kohlendioxid und Wasser umgesetzt. Zum anderen wird im Warmeaustauscher des katalytischen Brenners ein wesentlicher Teil des Wasserstroms, der fur die autotherme Reformierung benotigt wird, verdampft und uberhitzt.

[1]  Theodore R. Krause,et al.  Effect of temperature, steam-to-carbon ratio, and alkali metal additives on improving the sulfur tolerance of a Rh/La–Al2O3 catalyst reforming gasoline for fuel cell applications , 2008 .

[2]  Thomas Aicher,et al.  Catalytic autothermal reforming of Jet fuel , 2005 .

[3]  Detlef Stolten,et al.  Combination of autothermal reforming with water-gas-shift reaction—small-scale testing of different water-gas-shift catalysts , 2004 .

[4]  A. Outi I. Krause,et al.  Autothermal reforming of simulated and commercial diesel: The performance of zirconia-supported RhPt catalyst in the presence of sulfur , 2008 .

[5]  Martin O'Connell,et al.  Towards mass production of microstructured fuel processors for application in future distributed energy generation systems: A review of recent progress at IMM , 2012 .

[6]  Detlef Stolten,et al.  Optimised Mixture Formation for Diesel Fuel Processing , 2008 .

[7]  Xanthias Karatzas,et al.  Microemulsion and incipient wetness prepared Rh-based catalyst for diesel reforming , 2011 .

[8]  H. Vesala,et al.  Experimental Study of an SOFC Stack Operated With Autothermally Reformed Diesel Fuel , 2013 .

[9]  F. Solymosi,et al.  Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts , 1993 .

[10]  J. Bae,et al.  Autothermal reforming study of diesel for fuel cell application , 2006 .

[11]  Joachim Pasel,et al.  Catalytic burner with internal steam generation for a fuel-cell-based auxiliary power unit for middle distillates , 2014 .

[12]  P. Ekdunge,et al.  Diesel fuel reformer for automotive fuel cell applications , 2009 .

[13]  R. C. Samsun,et al.  Autothermal reforming of commercial Jet A-1 on a 5kWe scale , 2007 .

[14]  Gunther Kolb,et al.  Development and evaluation of a microreactor for the reforming of diesel fuel in the kW range , 2009 .

[15]  Gunther Kolb,et al.  Integrated Microstructured Fuel Processors for Fuel Cell Applications , 2005 .

[16]  Sangho Yoon,et al.  Self-sustained operation of a kWe-class kerosene-reforming processor for solid oxide fuel cells , 2009 .

[17]  Joongmyeon Bae,et al.  Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications , 2006 .

[18]  Sangho Yoon,et al.  Effects of ethylene on carbon formation in diesel autothermal reforming , 2008 .

[19]  M. Harada,et al.  Hydrogen production by autothermal reforming of kerosene over MgAlOx-supported Rh catalysts , 2009 .

[20]  Robert J. Farrauto,et al.  Determination of kinetic parameters for the water-gas shift reaction on copper catalysts under realistic conditions for fuel cell applications , 2003 .

[21]  J. Schwank,et al.  Effect of metal particle size on sulfur tolerance of Ni catalysts during autothermal reforming of isooctane , 2011 .

[22]  Sangho Yoon,et al.  Suppression of ethylene-induced carbon deposition in diesel autothermal reforming , 2009 .

[23]  S. Specchia Fuel processing activities at European level: A panoramic overview , 2014 .

[24]  John P. Baltrus,et al.  Characterization of coke deposited on Pt/alumina catalyst during reforming of liquid hydrocarbons , 2005 .

[25]  Lars J. Pettersson,et al.  Autothermal reforming of low-sulfur diesel over bimetallic RhPt supported on Al2O3, CeO2–ZrO2, SiO2 and TiO2 , 2011 .

[26]  Theodore R. Krause,et al.  Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen , 2006 .

[27]  A. Lindermeir,et al.  On-board diesel fuel processing for an SOFC–APU—Technical challenges for catalysis and reactor design , 2007 .

[28]  W. Maier,et al.  CO2-Reforming of Methane on Supported Rh and Ir Catalysts , 1996 .

[29]  K. Karan,et al.  Kinetic studies of the autothermal reforming of tetradecane over Pt/Al2O3 catalyst in a fixed-bed reactor , 2010 .

[30]  Enrique Iglesia,et al.  Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium , 2004 .

[31]  D. Creaser,et al.  Hydrogen generation from n-tetradecane, low-sulfur and Fischer-Tropsch diesel over Rh supported on alumina doped with ceria/lanthana , 2011 .

[32]  Gunther Kolb,et al.  Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy , 2013 .

[33]  Detlef Stolten,et al.  Long-term stability at fuel processing of diesel and kerosene , 2014 .

[34]  Sangho Yoon,et al.  A diesel fuel processor for stable operation of solid oxide fuel cells system: II. Integrated diesel fuel processor for the operation of solid oxide fuel cells , 2012 .