Toughness and the existence of k-factors. IV

In a paper with the same title [3], we proved Chvatal's conjecture thatk-tough graphs havek-factors if they satisfy trivial necessary conditions. In this paper, we prove the following stronger result: Suppose|V(G)| ≥ k + 1,k ⋅ |V(G)| even, and|S| ≥ k ⋅ w(G − S) − 7/8k ifw(G − S) ≥ 2, wherew(G − S) is the number of connected components ofG − S. ThenG has ak-factor.

[1]  Hikoe Enomoto,et al.  Toughness and the existence of k-factors , 1985, J. Graph Theory.

[2]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[3]  Hikoe Enomoto Toughness and the existence ofk-factors. II , 1986, Graphs Comb..

[4]  Odile Favaron,et al.  (2,k)-Factor-Critical Graphs and Toughness , 1999, Graphs Comb..

[5]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..

[6]  G. Chartrand,et al.  Graphs & Digraphs , 1986 .

[7]  W. T. Tutte The Factors of Graphs , 1952, Canadian Journal of Mathematics.