Population Dynamics in River Networks

AbstractNatural rivers connect to each other to form river networks. The geometric structure of a river network can significantly influence spatial dynamics of populations in the system. We consider a process-oriented model to describe population dynamics in river networks of trees, establish the fundamental theories of the corresponding parabolic problems and elliptic problems, derive the persistence threshold by using the principal eigenvalue of the corresponding eigenvalue problem, and define the net reproductive rate to describe population persistence or extinction. By virtue of numerical simulations, we investigate the effects of hydraulic, physical, and biological factors, especially the structure of the river network, on population persistence.

[1]  Xiao-Qiang Zhao,et al.  Computation of the basic reproduction numbers for reaction-diffusion epidemic models , 2023, Mathematical biosciences and engineering : MBE.

[2]  Günter Lumer Équations de diffusion sur des réseaux infinis , 1980 .

[3]  Yu Jin,et al.  Seasonal influences on population spread and persistence in streams: spreading speeds , 2012, Journal of mathematical biology.

[4]  Frithjof Lutscher,et al.  Effects of Heterogeneity on Spread and Persistence in Rivers , 2006, Bulletin of mathematical biology.

[5]  Delio Mugnolo,et al.  Gaussian estimates for a heat equation on a network , 2006, Networks Heterog. Media.

[6]  John R. Post,et al.  Instream flow needs in streams and rivers: the importance of understanding ecological dynamics , 2006 .

[7]  Frithjof Lutscher Nonlocal dispersal and averaging in heterogeneous landscapes , 2010 .

[8]  Gunog Seo,et al.  SPREAD RATES UNDER TEMPORAL VARIABILITY: CALCULATION AND APPLICATION TO BIOLOGICAL INVASIONS , 2011 .

[9]  Eiji Yanagida,et al.  Stability of nonconstant steady states in reaction-diffusion systems on graphs , 2001 .

[10]  Joachim von Below,et al.  Instability of Stationary Solutions of Reaction–Diffusion–Equations on Graphs , 2015, Results in Mathematics.

[11]  Joachim von Below A Maximum Principle for Semilinear Parabolic Network Equations , 2017 .

[12]  Frank M. Hilker,et al.  Predator–prey systems in streams and rivers , 2010, Theoretical Ecology.

[13]  Kurt E Anderson,et al.  Scaling population responses to spatial environmental variability in advection-dominated systems. , 2005, Ecology letters.

[14]  Yu Jin,et al.  R0 Analysis of a Spatiotemporal Model for a Stream Population , 2012, SIAM J. Appl. Dyn. Syst..

[15]  Frithjof Lutscher,et al.  Competition of three species in an advective environment , 2012 .

[16]  K. Müller,et al.  The colonization cycle of freshwater insects , 1982, Oecologia.

[17]  Frithjof Lutscher,et al.  Density-dependent dispersal in integrodifference equations , 2008, Journal of mathematical biology.

[18]  Rui Peng,et al.  The role of protection zone on species spreading governed by a reaction–diffusion model with strong Allee effect , 2018, Journal of Differential Equations.

[19]  Joachim von Below,et al.  Classical solvability of linear parabolic equations on networks , 1988 .

[20]  Kurt E. Anderson,et al.  Spatial Scaling of Consumer‐Resource Interactions in Advection‐Dominated Systems , 2006, The American Naturalist.

[21]  K. Fausch,et al.  Landscapes to Riverscapes: Bridging the Gap between Research and Conservation of Stream Fishes , 2002 .

[22]  Feng-Bin Wang,et al.  Dynamics of a benthic-drift model for two competitive species , 2018, Journal of Mathematical Analysis and Applications.

[23]  Kurt E Anderson,et al.  Population persistence in river networks , 2014, Journal of mathematical biology.

[24]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[25]  Donald L. DeAngelis,et al.  Modelling nutrient-periphyton dynamics in streams: the importance of transient storage zones , 1995 .

[26]  Yuan Lou,et al.  Evolution of dispersal in open advective environments , 2013, Journal of Mathematical Biology.

[27]  M. Gatto,et al.  On spatially explicit models of cholera epidemics , 2010, Journal of The Royal Society Interface.

[28]  William Gurney,et al.  POPULATION PERSISTENCE IN RIVERS AND ESTUARIES , 2001 .

[29]  P. Kuchment Quantum graphs: I. Some basic structures , 2004 .

[30]  Horst R. Thieme,et al.  Spectral Bound and Reproduction Number for Infinite-Dimensional Population Structure and Time Heterogeneity , 2009, SIAM J. Appl. Math..

[31]  Gunog Seo,et al.  The effect of temporal variability on persistence conditions in rivers. , 2011, Journal of theoretical biology.

[32]  Yu Jin,et al.  Seasonal Invasion Dynamics in a Spatially Heterogeneous River with Fluctuating Flows , 2014, Bulletin of mathematical biology.

[33]  Marie-Josée Fortin,et al.  Modelling dendritic ecological networks in space: an integrated network perspective. , 2013, Ecology letters.

[34]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[35]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[36]  Yu Jin,et al.  Seasonal Influences on Population Spread and Persistence in Streams: Critical Domain Size , 2011, SIAM J. Appl. Math..

[37]  Wolfgang Arendt,et al.  Diffusion in Networks with Time-Dependent Transmission Conditions , 2014 .

[38]  Yu Jin,et al.  R0 Analysis of a Benthic-Drift Model for a Stream Population , 2016, SIAM J. Appl. Dyn. Syst..

[39]  J. Ramírez,et al.  Population persistence under advection–diffusion in river networks , 2011, Journal of mathematical biology.

[40]  Rui Peng,et al.  The Fisher-KPP equation over simple graphs: varied persistence states in river networks , 2020, Journal of mathematical biology.

[41]  G. Lumer Connecting of local operators and evolution equations on networks , 1980 .

[42]  Frithjof Lutscher,et al.  Meandering Rivers: How Important is Lateral Variability for Species Persistence? , 2017, Bulletin of mathematical biology.

[43]  Frithjof Lutscher,et al.  Spatial patterns and coexistence mechanisms in systems with unidirectional flow. , 2007, Theoretical population biology.

[44]  W. Fagan CONNECTIVITY, FRAGMENTATION, AND EXTINCTION RISK IN DENDRITIC METAPOPULATIONS , 2002 .

[45]  Joachim von Below,et al.  Eigenvalue asymptotics for second-order elliptic operators on networks , 2012, Asymptot. Anal..

[46]  Kurt E. Anderson,et al.  Modeling population persistence in continuous aquatic networks using metric graphs , 2015 .

[47]  M A Lewis,et al.  Persistence, spread and the drift paradox. , 2005, Theoretical population biology.

[48]  Enrico Bertuzzo,et al.  Metapopulation persistence and species spread in river networks. , 2014, Ecology letters.

[49]  Yu Jin,et al.  Integrodifference models for persistence in temporally varying river environments , 2014, Journal of mathematical biology.

[50]  J. Below Sturm-Liouville eigenvalue problems on networks , 1988 .

[51]  Olga Vasilyeva Population dynamics in river networks: analysis of steady states , 2019, Journal of mathematical biology.

[52]  Yuan Lou,et al.  Evolution of dispersal in closed advective environments , 2015, Journal of biological dynamics.

[53]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[54]  Yihong Du,et al.  Order Structure and Topological Methods in Nonlinear Partial Differential Equations: Vol. 1: Maximum Principles and Applications , 2006 .

[55]  Delio Mugnolo,et al.  Variational and Semigroup Methods for Waves and Diffusion in Networks , 2007, 1209.1495.

[56]  Frithjof Lutscher,et al.  Population persistence in the face of advection , 2010, Theoretical Ecology.

[57]  Mark A. Lewis,et al.  The Effect of Dispersal Patterns on Stream Populations , 2005, SIAM J. Appl. Math..

[58]  W. Fagan,et al.  Living in the branches: population dynamics and ecological processes in dendritic networks. , 2007, Ecology letters.

[59]  F. Lutscher,et al.  POPULATION DYNAMICS IN RIVERS: ANALYSIS OF STEADY STATES , 2022 .

[60]  Kim Cuddington,et al.  Predator‐Prey Dynamics and Movement in Fractal Environments , 2002, The American Naturalist.

[61]  Heather J. Lynch,et al.  Effects of branching spatial structure and life history on the asymptotic growth rate of a population , 2010, Theoretical Ecology.

[62]  M. Hanif Chaudhry,et al.  Open-Channel Flow , 2007 .

[63]  Yuan Lou,et al.  The Emergence of Range Limits in Advective Environments , 2016, SIAM J. Appl. Math..

[64]  J. Nichols,et al.  Use of multiple dispersal pathways facilitates amphibian persistence in stream networks , 2010, Proceedings of the National Academy of Sciences.