Angle bracket connections for CLT structures: Experimental characterization and numerical modelling

[1]  A. Ang,et al.  Seismic Damage Analysis of Reinforced Concrete Buildings , 1985 .

[2]  J. D. Dolan The dynamic response of timber shear walls , 1989 .

[3]  B. Folz,et al.  Cyclic Analysis of Wood Shear Walls , 2001 .

[4]  N. Richard,et al.  Prediction of seismic behavior of wood-framed shear walls with openings by pseudodynamic test and FE model , 2003, Journal of Wood Science.

[5]  L. Lowes,et al.  A Beam-Column Joint Model for Simulating the Earthquake Response of Reinforced Concrete Frames , 2004 .

[6]  Ario Ceccotti,et al.  New Technologies for Construction of Medium-Rise Buildings in Seismic Regions: The XLAM Case , 2008 .

[7]  B. T. Kivell,et al.  HYSTERETIC MODELLING OF MOMENT-RESISTING NAILED TIMBER , 2009 .

[8]  Massimo Fragiacomo,et al.  Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions , 2011 .

[9]  M. Fragiacomo,et al.  Experimental-numerical analyses of the seismicbehaviour of cross-laminated wall systems , 2012 .

[10]  John W. van de Lindt,et al.  Approximate R-Factor for Cross-Laminated Timber Walls in Multistory Buildings , 2013 .

[11]  Naohito Kawai,et al.  SOFIE project – 3D shaking table test on a seven‐storey full‐scale cross‐laminated timber building , 2013 .

[12]  Claudio Amadio,et al.  A component approach for the hysteretic behaviour of connections in cross‐laminated wooden structures , 2013 .

[13]  J. Hummel,et al.  CLT Wall Elements Under Cyclic Loading - Details for Anchorage and Connection , 2013 .

[14]  Bruno Dujic,et al.  Full-Scale Shaking-Table Tests of XLam Panel Systems and Numerical Verification: Specimen 1 , 2013 .

[15]  M. Fragiacomo,et al.  Cyclic behavior of typical screwed connections for cross-laminated (CLT) structures , 2015, European Journal of Wood and Wood Products.

[16]  John W. van de Lindt,et al.  Force Modification Factors for CLT Structures for NBCC , 2014 .

[17]  Gerhard Schickhofer,et al.  Shaking-table test of a cross-laminated timber structure , 2015 .

[18]  Ario Ceccotti,et al.  Cyclic behaviour of typical metal connectors for cross-laminated (CLT) structures , 2015 .

[19]  Roberto Scotta,et al.  Influence of wall assembly on behaviour of cross-laminated timber buildings , 2015 .

[20]  Roberto Tomasi,et al.  Experimental Characterization of Monotonic and Cyclic Loading Responses of CLT Panel-To-Foundation Angle Bracket Connections , 2015 .

[21]  Ario Ceccotti,et al.  Cyclic Behavior of CLT Wall Systems: Experimental Tests and Analytical Prediction Models , 2015 .

[22]  Gerhard Schickhofer,et al.  Experimental tests on cross-laminated timber joints and walls , 2015 .

[23]  M. Savoia,et al.  Experimental campaign of mechanical CLT connections subjected to a combination of shear and tension forces , 2016 .

[24]  Thomas Markus Laggner,et al.  Combinded loading of self-tapping screws , 2016 .

[25]  Marjan Popovski,et al.  Performance of a 2-Story CLT House Subjected to Lateral Loads , 2016 .

[26]  Kazuyuki Matsumoto,et al.  Full-Scale Tests and Numerical Analysis of Low-Rise CLT Structures under Lateral Loading , 2016 .

[27]  Massimo Fragiacomo,et al.  Non-linear simulation of shaking-table tests on 3- and 7-storey X-Lam timber buildings , 2016 .

[28]  Luca Pozza,et al.  Coupled axial-shear numerical model for CLT connections , 2017 .

[29]  M. Popovski,et al.  In-Plane Stiffness of Cross-Laminated Timber Panels with Openings , 2017 .

[30]  M. Savoia,et al.  Axial – Shear interaction on CLT hold-down connections – Experimental investigation , 2018 .

[31]  M. Fragiacomo,et al.  Investigating the Hysteretic Behavior of Cross-Laminated Timber Wall Systems due to Connections , 2018 .