Time Series of Total Heating and Moistening over the Gulf of Carpentaria Radiosonde Array during AMEX

Abstract Line integral techniques are used to calculate vertically integrated heat and moisture budgets over the Gulf of Carpentaria during Phase II of the Australian Monsoon Experiment (AMEX). The budget area is an array of six radiosondes in a monsoon environment, and the calculations are performed every 6 hours over a period of 33 days. During convective outbreaks the integrated heating and drying of the large scale by the cumulonimbus activity has a magnitude of the order of 10°C day−1. The heat and moisture sources are dominated by the flux divergence terms, which account for over 90% of the variance. The observed warming is as large as ±1°C day−1 but is diurnally dominated and does not correspond to the latent heat release. The integrated moisture convergence has a high correlation with latent heat release but not with the measured moisture storage. The convective heat source is also highly correlated with middle tropospheric vertical velocity. Mean budgets are presented for each of the four diurnal...