LP-based solution methods for single-machine scheduling problems

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[2]  E. Balas On the facial structure of scheduling polyhedra , 1985 .

[3]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[4]  Frits C. R. Spieksma,et al.  Scheduling jobs of equal length: complexity and facets , 1994 .

[5]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[6]  J. Sousa,et al.  Time Indexed Formulations Of Non-Preemptive Single-Machine Schduling Problems , 1989 .

[7]  Jan Karel Lenstra,et al.  Complexity of Scheduling under Precedence Constraints , 1978, Oper. Res..

[8]  van den Jm Marjan Akker,et al.  Facet inducing inequalities for single-machine scheduling problems , 1993 .

[9]  E. Lawler Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Precedence Constraints , 1978 .

[10]  Laurence A. Wolsey,et al.  A time indexed formulation of non-preemptive single machine scheduling problems , 1992, Math. Program..

[11]  Pamela H. Vance,et al.  Crew scheduling, cutting stock, and column generation :Solving huge integer programs , 1993 .

[12]  Martin Grötschel,et al.  Facets of the linear ordering polytope , 1985, Math. Program..

[13]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[14]  L. Wolsey,et al.  Formulating Single Machine Scheduling Problems With Precedence Constraints , 1989 .

[15]  Maurice Queyranne,et al.  Single-Machine Scheduling Polyhedra with Precedence Constraints , 1991, Math. Oper. Res..

[16]  C. N. Potts,et al.  Scheduling with release dates on a single machine to minimize total weighted completion time , 1992, Discret. Appl. Math..

[17]  Maurice Queyranne,et al.  Generic Scheduling Polyhedra and a New Mixed-Integer Formulation for Single-Machine Scheduling , 1992, IPCO.

[18]  M. Padberg,et al.  Lp-based combinatorial problem solving , 1985 .

[19]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[20]  George B. Dantzig,et al.  Generalized Upper Bounding Techniques , 1967, J. Comput. Syst. Sci..

[21]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[22]  Martin E. Dyer,et al.  Formulating the single machine sequencing problem with release dates as a mixed integer program , 1990, Discret. Appl. Math..

[23]  Maurice Queyranne,et al.  Structure of a simple scheduling polyhedron , 1993, Math. Program..

[24]  Nicholas G. Hall Scheduling Problems With Generalized Due Dates , 1986 .

[25]  Chelliah Sriskandarajah,et al.  On the Complexity of Generalized Due Date Scheduling Problems , 1991 .

[26]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[27]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[28]  J. B. Rosen Primal partition programming for block diagonal matrices , 1964 .

[29]  George L. Nemhauser,et al.  A Cutting Plane Algorithm for the Single Machine Scheduling Problem with Release Times , 1992 .

[30]  W. Pulleyblank,et al.  Total Dual Integrality and Integer Polyhedra , 1979 .