A spatially homogeneous Boltzmann equation for elastic, inelastic and coalescing collisions

Existence, uniqueness, and qualitative behavior of the solution to a spatially homogeneous Boltzmann equation for particles undergoing elastic, inelastic, and coalescing collisions are studied. Under general assumptions on the collision rates, we prove existence and uniqueness of an $L^1$ solution. This shows in particular that the cooling effect (due to inelastic collisions) does not occur in finite time. In the long time asymptotic, we prove that the solution converges to a mass-dependent Maxwellian (when only elastic collisions are considered), to a velocity Dirac mass (when elastic and inelastic collisions are considered), and to $0$ (when elastic, inelastic, and coalescing collisions are considered). We thus show in the latter case that the effect of coalescence is dominating in large time. Our proofs gather deterministic and stochastic arguments.

[1]  D. Aldous Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .

[2]  K. Beard,et al.  Numerical Collision Efficiencies for Small Raindrops Colliding with Micron Size Particles , 1974 .

[3]  Stéphane Mischler,et al.  On the spatially homogeneous Boltzmann equation , 1999 .

[4]  Irving Langmuir,et al.  THE PRODUCTION OF RAIN BY A CHAIN REACTION IN CUMULUS CLOUDS AT TEMPERATURES ABOVE FREEZING , 1948 .

[5]  F. Spellman Combustion Theory , 2020 .

[6]  C. Cercignani Recent Results in the Kinetic Theory of Granular Materials , 2003 .

[7]  Birkhauser Modeling and Computational Methods for Kinetic Equations , 2004 .

[8]  David Gladstone Review article , 2005, Health Care Analysis.

[9]  P. Villedieu,et al.  Une méthode particulaire aléatoire reposant sur une équation cinétique pour la simulation numérique des sprays denses de gouttelettes liquides , 1997 .

[10]  Irene M. Gamba,et al.  On the Boltzmann Equation for Diffusively Excited Granular Media , 2004 .

[11]  S. Mischler,et al.  On a quantum boltzmann equation for a gas of photons , 2001 .

[12]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[13]  Hiroshi Tanaka Probabilistic treatment of the Boltzmann equation of Maxwellian molecules , 1978 .

[14]  Stéphane Mischler,et al.  Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions , 2003 .

[15]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[16]  Irene M. Gamba,et al.  Moment Inequalities and High-Energy Tails for Boltzmann Equations with Inelastic Interactions , 2004 .

[17]  O. Simonin,et al.  MODELING OF COALESCENCE IN TURBULENT GAS-DROPLET FLOWS , 2004 .

[18]  Madalina Deaconu,et al.  A pure jump Markov process associated with Smoluchowski's coagulation equation , 2002 .

[19]  S. Mischler,et al.  On a discrete Boltzmann-Smoluchowski equation with rates bounded in the velocity variables , 2004 .

[20]  R. Illner,et al.  Collision Integrals for Attractive Potentials , 1999 .

[21]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[22]  Marius Ungarish Hydrodynamics of Suspensions: Fundamentals of Centrifugal and Gravity Separation , 1993 .

[23]  N. Ashgriz,et al.  Coalescence and separation in binary collisions of liquid drops , 1990, Journal of Fluid Mechanics.

[24]  Carlo Cercignani,et al.  Self-Similar Asymptotics for the Boltzmann Equation with Inelastic and Elastic Interactions , 2003 .

[25]  Metastable fluid flow described via a discrete-velocity coagulation-fragmentation model , 1996 .

[26]  J. Norris,et al.  Smoluchowski's coagulation equation: uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent , 1998, math/9801145.

[27]  Pavel B Dubovskii,et al.  Mathematical theory of coagulation , 1994 .

[28]  S. Mischler,et al.  On a Kinetic Equation for Coalescing Particles , 2004 .

[29]  F. Pigeonneau Modélisation et calcul numérique des collisions de gouttes en écoulements laminaires et turbulents , 1998 .

[30]  P. Lions,et al.  Compactness in Boltzmann’s equation via Fourier integral operators and applications. III , 1994 .

[31]  C. Graham,et al.  Stochastic particle approximations for generalized Boltzmann models and convergence estimates , 1997 .

[32]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[33]  J. Sartor,et al.  Theoretical Collision Efficiencies for Small Cloud Droplets in Stokes Flow , 1967, Nature.

[34]  Jerrold E. Marsden,et al.  Perspectives and Problems in Nonlinear Science , 2003 .

[35]  N. Fournier,et al.  On Small Particles in Coagulation-Fragmentation Equations , 2003 .

[36]  A. Sznitman Équations de type de Boltzmann, spatialement homogènes , 1984 .

[37]  Speer Morgan Collisions , 2019, Science.

[38]  Gabriella Di Blasio Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non maxwellian case , 1974 .

[39]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[40]  J. Roquejoffre,et al.  A KINETIC MODEL FOR DROPLET COALESCENCE IN DENSE SPRAYS , 2001 .

[41]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[42]  I. W. Stewart,et al.  A uniqueness theorem for the coagulation-fragmentation equation , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[43]  Philippe Laurençot,et al.  On coalescence equations and related models , 2004 .

[44]  Denis Serre,et al.  Handbook of mathematical fluid dynamics , 2002 .

[45]  H. Bruce Stewart,et al.  Two-phase flow: Models and methods , 1984 .

[46]  John Abraham,et al.  Modeling the outcome of drop–drop collisions in Diesel sprays , 2002 .

[47]  Théorie cinétique des gaz , 1921 .

[48]  G. Lavergne,et al.  Experimental investigation of dynamic binary collision of ethanol droplets – a model for droplet coalescence and bouncing , 1999 .

[49]  J. Latham,et al.  The interaction of falling water drops: coalescence , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  E. Peirano,et al.  The pdf approach to turbulent polydispersed two-phase flows , 2001 .

[51]  Irene M. Gamba,et al.  On Some Properties of Kinetic and Hydrodynamic Equations for Inelastic Interactions , 2000 .

[52]  R. J. DiPerna,et al.  Global solutions of Boltzmann's equation and the entropy inequality , 1991 .

[53]  Giuseppe Toscani,et al.  One-dimensional kinetic models of granular flows , 2000 .

[54]  J. M. BalP The Discrete Coagulation-Fragmentation Equations: Existence, Uniqueness, and Density Conservation , 2004 .

[55]  Philippe Laurençot,et al.  From the discrete to the continuous coagulation–fragmentation equations , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.