A spatially homogeneous Boltzmann equation for elastic, inelastic and coalescing collisions
暂无分享,去创建一个
[1] D. Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .
[2] K. Beard,et al. Numerical Collision Efficiencies for Small Raindrops Colliding with Micron Size Particles , 1974 .
[3] Stéphane Mischler,et al. On the spatially homogeneous Boltzmann equation , 1999 .
[4] Irving Langmuir,et al. THE PRODUCTION OF RAIN BY A CHAIN REACTION IN CUMULUS CLOUDS AT TEMPERATURES ABOVE FREEZING , 1948 .
[5] F. Spellman. Combustion Theory , 2020 .
[6] C. Cercignani. Recent Results in the Kinetic Theory of Granular Materials , 2003 .
[7] Birkhauser. Modeling and Computational Methods for Kinetic Equations , 2004 .
[8] David Gladstone. Review article , 2005, Health Care Analysis.
[9] P. Villedieu,et al. Une méthode particulaire aléatoire reposant sur une équation cinétique pour la simulation numérique des sprays denses de gouttelettes liquides , 1997 .
[10] Irene M. Gamba,et al. On the Boltzmann Equation for Diffusively Excited Granular Media , 2004 .
[11] S. Mischler,et al. On a quantum boltzmann equation for a gas of photons , 2001 .
[12] C. Villani. Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .
[13] Hiroshi Tanaka. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules , 1978 .
[14] Stéphane Mischler,et al. Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions , 2003 .
[15] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[16] Irene M. Gamba,et al. Moment Inequalities and High-Energy Tails for Boltzmann Equations with Inelastic Interactions , 2004 .
[17] O. Simonin,et al. MODELING OF COALESCENCE IN TURBULENT GAS-DROPLET FLOWS , 2004 .
[18] Madalina Deaconu,et al. A pure jump Markov process associated with Smoluchowski's coagulation equation , 2002 .
[19] S. Mischler,et al. On a discrete Boltzmann-Smoluchowski equation with rates bounded in the velocity variables , 2004 .
[20] R. Illner,et al. Collision Integrals for Attractive Potentials , 1999 .
[21] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[22] Marius Ungarish. Hydrodynamics of Suspensions: Fundamentals of Centrifugal and Gravity Separation , 1993 .
[23] N. Ashgriz,et al. Coalescence and separation in binary collisions of liquid drops , 1990, Journal of Fluid Mechanics.
[24] Carlo Cercignani,et al. Self-Similar Asymptotics for the Boltzmann Equation with Inelastic and Elastic Interactions , 2003 .
[25] Metastable fluid flow described via a discrete-velocity coagulation-fragmentation model , 1996 .
[26] J. Norris,et al. Smoluchowski's coagulation equation: uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent , 1998, math/9801145.
[27] Pavel B Dubovskii,et al. Mathematical theory of coagulation , 1994 .
[28] S. Mischler,et al. On a Kinetic Equation for Coalescing Particles , 2004 .
[29] F. Pigeonneau. Modélisation et calcul numérique des collisions de gouttes en écoulements laminaires et turbulents , 1998 .
[30] P. Lions,et al. Compactness in Boltzmann’s equation via Fourier integral operators and applications. III , 1994 .
[31] C. Graham,et al. Stochastic particle approximations for generalized Boltzmann models and convergence estimates , 1997 .
[32] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[33] J. Sartor,et al. Theoretical Collision Efficiencies for Small Cloud Droplets in Stokes Flow , 1967, Nature.
[34] Jerrold E. Marsden,et al. Perspectives and Problems in Nonlinear Science , 2003 .
[35] N. Fournier,et al. On Small Particles in Coagulation-Fragmentation Equations , 2003 .
[36] A. Sznitman. Équations de type de Boltzmann, spatialement homogènes , 1984 .
[37] Speer Morgan. Collisions , 2019, Science.
[38] Gabriella Di Blasio. Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non maxwellian case , 1974 .
[39] P. Lions,et al. On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .
[40] J. Roquejoffre,et al. A KINETIC MODEL FOR DROPLET COALESCENCE IN DENSE SPRAYS , 2001 .
[41] E. Caglioti,et al. A kinetic equation for granular media , 2009 .
[42] I. W. Stewart,et al. A uniqueness theorem for the coagulation-fragmentation equation , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.
[43] Philippe Laurençot,et al. On coalescence equations and related models , 2004 .
[44] Denis Serre,et al. Handbook of mathematical fluid dynamics , 2002 .
[45] H. Bruce Stewart,et al. Two-phase flow: Models and methods , 1984 .
[46] John Abraham,et al. Modeling the outcome of drop–drop collisions in Diesel sprays , 2002 .
[47] Théorie cinétique des gaz , 1921 .
[48] G. Lavergne,et al. Experimental investigation of dynamic binary collision of ethanol droplets – a model for droplet coalescence and bouncing , 1999 .
[49] J. Latham,et al. The interaction of falling water drops: coalescence , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[50] E. Peirano,et al. The pdf approach to turbulent polydispersed two-phase flows , 2001 .
[51] Irene M. Gamba,et al. On Some Properties of Kinetic and Hydrodynamic Equations for Inelastic Interactions , 2000 .
[52] R. J. DiPerna,et al. Global solutions of Boltzmann's equation and the entropy inequality , 1991 .
[53] Giuseppe Toscani,et al. One-dimensional kinetic models of granular flows , 2000 .
[54] J. M. BalP. The Discrete Coagulation-Fragmentation Equations: Existence, Uniqueness, and Density Conservation , 2004 .
[55] Philippe Laurençot,et al. From the discrete to the continuous coagulation–fragmentation equations , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.