Direct quantification of cytosolic delivery of drug nanocarriers using FlAsH-EDT2.

[1]  Jinjun Shi,et al.  Lipids and the Emerging RNA Medicines. , 2021, Chemical reviews.

[2]  Joshua J. Rennick,et al.  Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay , 2021, Nature Communications.

[3]  F. Granucci,et al.  Inositol 1,4,5-trisphosphate 3-kinase B promotes Ca2+ mobilization and the inflammatory activity of dendritic cells , 2021, Science Signaling.

[4]  Michael J. Munson,et al.  A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery , 2020, Communications biology.

[5]  M. Rizzuto,et al.  Modeling the interaction of amphiphilic polymer nanoparticles with biomembranes to Guide rational design of drug delivery systems. , 2020, Colloids and surfaces. B, Biointerfaces.

[6]  M. Christodoulou,et al.  Engineered Ferritin Nanoparticles for the Bioluminescence Tracking of Nanodrug Delivery in Cancer. , 2020, Small.

[7]  R. De Francesco,et al.  Nanoparticle‐Mediated Suicide Gene Therapy for Triple Negative Breast Cancer Treatment , 2020 .

[8]  F. Montorsi,et al.  The anti-tumoral potential of the saporin-based uPAR-targeting chimera ATF-SAP , 2020, Scientific Reports.

[9]  Joshua A. Kritzer,et al.  Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. , 2019, Bioconjugate chemistry.

[10]  Kevin Braeckmans,et al.  The proton sponge hypothesis: Fable or fact? , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  Peter Dubruel,et al.  Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal Vesicles. , 2018, ACS nano.

[12]  M. Stenzel,et al.  Entry of nanoparticles into cells: the importance of nanoparticle properties , 2018 .

[13]  Andreas Plückthun,et al.  A quantitative comparison of cytosolic delivery via different protein uptake systems , 2017, Scientific Reports.

[14]  R. Vanna,et al.  H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells. , 2017, Biomacromolecules.

[15]  Angus P R Johnston,et al.  Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. , 2017, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[16]  S. Dowdy,et al.  Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics , 2016, Scientific Reports.

[17]  J. Pellois,et al.  Membrane Oxidation Enables the Cytosolic Entry of Polyarginine Cell-penetrating Peptides* , 2016, The Journal of Biological Chemistry.

[18]  Dong-Myung Kim,et al.  Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay. , 2015, Biochemical and biophysical research communications.

[19]  C. Case,et al.  Understanding nanoparticle cellular entry: A physicochemical perspective. , 2015, Advances in colloid and interface science.

[20]  M. Bellini,et al.  Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[21]  Kevin Braeckmans,et al.  Intracellular delivery of nanomaterials: how to catch endosomal escape in the act , 2014 .

[22]  Sandra K. Tanz,et al.  Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants , 2013, Front. Plant Sci..

[23]  S. Plevy,et al.  A Cell Permeable Peptide Inhibitor of NFAT Inhibits Macrophage Cytokine Expression and Ameliorates Experimental Colitis , 2012, PloS one.

[24]  Gert Storm,et al.  Endosomal escape pathways for delivery of biologicals. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[25]  R. Tsien,et al.  Fluorescent labeling of tetracysteine-tagged proteins in intact cells , 2010, Nature Protocols.

[26]  P. Couvreur,et al.  Nanocarriers’ entry into the cell: relevance to drug delivery , 2009, Cellular and Molecular Life Sciences.

[27]  R. Tsien,et al.  Preparation of the membrane-permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins , 2008, Nature Protocols.

[28]  Robert Langer,et al.  A combinatorial library of lipid-like materials for delivery of RNAi therapeutics , 2008, Nature Biotechnology.

[29]  S. Futaki,et al.  Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. , 2008, Bioconjugate chemistry.

[30]  Baowei Chen,et al.  CrAsH: a biarsenical multi-use affinity probe with low non-specific fluorescence. , 2006, Chemical communications.

[31]  Brent R. Martin,et al.  Mammalian cell–based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity , 2005, Nature Biotechnology.

[32]  G. De Rosa,et al.  Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. , 2003, Journal of pharmaceutical and biomedical analysis.

[33]  Robert E Campbell,et al.  New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. , 2002, Journal of the American Chemical Society.

[34]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[35]  S. Chatterjee,et al.  Diffusion of proteins across the nuclear envelope of HeLa cells. , 1998, BioTechniques.

[36]  Tullio Pozzan,et al.  Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells , 1995, Current Biology.