Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi

GDMT (Golgi-derived microtubule) asymmetry is required for polarized cell motility, but its origin is elusive. Combining experimental and computational approaches, we find that GDMTs arise from spatially restricted hotspots that rely on γ-TuNA (γ-TuRC nucleation activator) activity. The nonrandom nucleation pattern underlies GDMT array asymmetry.

[1]  Sabine Petry,et al.  Structural analysis of the role of TPX2 in branching microtubule nucleation , 2017, The Journal of cell biology.

[2]  C. Hoogenraad,et al.  Molecular Pathway of Microtubule Organization at the Golgi Apparatus. , 2016, Developmental cell.

[3]  A. Schmidt,et al.  Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging , 2016, The EMBO journal.

[4]  Jens Luders The Microtubule Cytoskeleton : Organisation, Function and Role in Disease , 2016 .

[5]  A. Merdes,et al.  Non-centrosomal Microtubule Organization in Differentiated Cells , 2016 .

[6]  I. Kaverina,et al.  Nucleation and Dynamics of Golgi-derived Microtubules , 2015, Front. Neurosci..

[7]  R. Stein,et al.  Microtubules Negatively Regulate Insulin Secretion in Pancreatic β Cells. , 2015, Developmental cell.

[8]  K. White,et al.  Centrosomin represses dendrite branching by orienting microtubule nucleation , 2015, Nature Neuroscience.

[9]  Kimberly K. Fong,et al.  Ring closure activates yeast γTuRC for species-specific microtubule nucleation , 2014, Nature Structural &Molecular Biology.

[10]  R. Qi,et al.  A newly identified myomegalin isoform functions in Golgi microtubule organization and ER–Golgi transport , 2014, Journal of Cell Science.

[11]  Catherine Rabouille,et al.  Golgi fragmentation in pmn mice is due to a defective ARF1/TBCE cross-talk that coordinates COPI vesicle formation and tubulin polymerization. , 2014, Human molecular genetics.

[12]  A. Suzuki,et al.  MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane , 2014, Nature Communications.

[13]  L. Pelletier,et al.  Cep192 Controls the Balance of Centrosome and Non-Centrosomal Microtubules during Interphase , 2014, PloS one.

[14]  E. Ralston,et al.  Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements , 2013, The Journal of cell biology.

[15]  R. Qi,et al.  Dynamic Recruitment of CDK5RAP2 to Centrosomes Requires Its Association with Dynein , 2013, PloS one.

[16]  H. Maiato,et al.  Modulation of Golgi‐associated microtubule nucleation throughout the cell cycle , 2013, Cytoskeleton.

[17]  D. Birnbaum,et al.  Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules , 2012, Biology Open.

[18]  Y. Jan,et al.  Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons , 2012, Neuron.

[19]  A. Mogilner,et al.  Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not for maintenance , 2012, Molecular biology of the cell.

[20]  Erik Meijering,et al.  Methods for cell and particle tracking. , 2012, Methods in enzymology.

[21]  Tan Zhang,et al.  Who Needs Microtubules? Myogenic Reorganization of MTOC, Golgi Complex and ER Exit Sites Persists Despite Lack of Normal Microtubule Tracks , 2011, PloS one.

[22]  M. Bornens,et al.  Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis , 2011, The Journal of cell biology.

[23]  C. Dai,et al.  Department of Biochemistry , 2011 .

[24]  Niels Galjart,et al.  Plus-End-Tracking Proteins and Their Interactions at Microtubule Ends , 2010, Current Biology.

[25]  Wei Zheng,et al.  Conserved Motif of CDK5RAP2 Mediates Its Localization to Centrosomes and the Golgi Complex* , 2010, The Journal of Biological Chemistry.

[26]  J. Bear,et al.  Golgi polarity does not correlate with speed or persistence of freely migrating fibroblasts. , 2009, European journal of cell biology.

[27]  Andrew W. Folkmann,et al.  Golgi-derived CLASP-dependent Microtubules Control Golgi Organization and Polarized Trafficking in Motile Cells , 2009, Nature Cell Biology.

[28]  M. Bornens,et al.  Microtubule nucleation at the cis‐side of the Golgi apparatus requires AKAP450 and GM130 , 2009, The EMBO journal.

[29]  Ilya Grigoriev,et al.  Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites , 2008, Journal of Cell Science.

[30]  J. B. Rattner,et al.  CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. , 2008, Molecular biology of the cell.

[31]  E. Rodriguez-Boulan,et al.  Efficient Electroporation of DNA and Protein into Confluent and Differentiated Epithelial Cells in Culture , 2007, Traffic.

[32]  J. Yates,et al.  Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. , 2007, Developmental cell.

[33]  U Serdar Tulu,et al.  Quantification of microtubule nucleation, growth and dynamics in wound-edge cells , 2005, Journal of Cell Science.

[34]  Michel Bornens,et al.  GMAP-210 Recruits γ-Tubulin Complexes to cis-Golgi Membranes and Is Required for Golgi Ribbon Formation , 2004, Cell.

[35]  R. Shanks,et al.  AKAP350 at the Golgi Apparatus , 2002, The Journal of Biological Chemistry.

[36]  Y. Ono,et al.  Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. , 2002, Molecular biology of the cell.

[37]  F. Perez,et al.  The Golgi complex is a microtubule-organizing organelle. , 2001, Molecular biology of the cell.

[38]  Y. Ono,et al.  Characterization of a Novel Giant Scaffolding Protein, CG-NAP, That Anchors Multiple Signaling Enzymes to Centrosome and the Golgi Apparatus* , 1999, The Journal of Biological Chemistry.

[39]  M. Bornens,et al.  gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. , 1996, Journal of cell science.