On-Surface Activation of Trimethylsilyl-Terminated Alkynes on Coinage Metal Surfaces.

The controlled attachment of protecting groups combined with the ability to selectively abstract them is central to organic synthesis. The trimethylsilyl (TMS) functional group is a popular protecting group in solution. However, insights on its activation behavior under ultra-high vacuum (UHV) and surface-confined conditions are scarce. Here we investigate a series of TMS-protected alkyne precursors via scanning tunneling microscopy (STM) regarding their compatibility with organic molecular beam epitaxy (OMBE) and their potential deprotection on various coinage metal surfaces. After in-situ evaporation on the substrates held in UHV at room temperature, we find that all molecules arrived and adsorbed as intact units forming ordered supramolecular aggregates stabilized by non-covalent interactions. Thus, TMS-functionalized alkyne precursors with weights up to 1100 atomic mass units are stable against OMBE evaporation in UHV. Furthermore, the TMS activation through thermal annealing is investigated with STM and X-ray photoelectron spectroscopy (XPS). We observe that deprotection starts to occur between 400 K and 500 K on the copper and gold surfaces, respectively. In contrast, on silver surfaces, the TMS-alkyne bond remains stable up to temperatures where molecular desorption sets in (≈ 600 K). Hence, TMS functional groups can be utilized as a leaving groups on copper and gold surfaces while they serve as protecting groups on silver surfaces.

[1]  A. Seitsonen,et al.  Synthesizing Highly Regular Single-Layer Alkynyl-Silver Networks at the Micrometer Scale via Gas-Mediated Surface Reaction. , 2019, Journal of the American Chemical Society.

[2]  J. Barth,et al.  Ho-Mediated Alkyne Reactions at Low Temperatures on Ag(111). , 2018, Chemistry.

[3]  Xiaojun Wu,et al.  Kinetic Strategies for the Formation of Graphyne Nanowires via Sonogashira Coupling on Ag(111). , 2018, Journal of the American Chemical Society.

[4]  Xiaojun Wu,et al.  Unravelling the Mechanism of Glaser Coupling Reaction on Ag(111) and Cu(111) Surfaces: a Case for Halogen Substituted Terminal Alkyne , 2018, The Journal of Physical Chemistry C.

[5]  Wei Chen,et al.  Bromine adatom promoted C-H bond activation in terminal alkynes at room temperature on Ag(111). , 2018, Physical chemistry chemical physics : PCCP.

[6]  J. Barth,et al.  Functionalized Graphdiyne Nanowires: On-Surface Synthesis and Assessment of Band Structure, Flexibility, and Information Storage Potential. , 2018, Small.

[7]  K. Eichhorn,et al.  Smart functional polymer coatings for paper with anti-fouling properties. , 2018, Journal of materials chemistry. B.

[8]  A. Seitsonen,et al.  Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. , 2018, Nature chemistry.

[9]  Junfa Zhu,et al.  Chiral Kagome Lattices from On-Surface Synthesized Molecules. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  J. Barth,et al.  Terminal Alkyne Coupling on a Corrugated Noble Metal Surface: From Controlled Precursor Alignment to Selective Reactions. , 2017, Chemistry.

[11]  K. Kuroda,et al.  Protecting and Leaving Functions of Trimethylsilyl Groups in Trimethylsilylated Silicates for the Synthesis of Alkoxysiloxane Oligomers. , 2017, Angewandte Chemie.

[12]  S. Klyatskaya,et al.  1D and 2D Graphdiynes: Recent Advances on the Synthesis at Interfaces and Potential Nanotechnological Applications , 2017 .

[13]  Saeed Amirjalayer,et al.  Intermolecular On-Surface σ-Bond Metathesis. , 2017, Journal of the American Chemical Society.

[14]  Xiaojun Wu,et al.  Highly Selective Synthesis of cis-Enediynes on a Ag(111) Surface. , 2017, Angewandte Chemie.

[15]  M. Grover,et al.  A viscous solvent enables information transfer from gene-length nucleic acids in a model prebiotic replication cycle. , 2017, Nature chemistry.

[16]  A. Görling,et al.  Triethynylmethanol Derivatives: Stable Acetylenic Building Blocks for Surface Chemistry. , 2017, Chemistry.

[17]  A. Seitsonen,et al.  Epitaxy-Induced Assembly and Enantiomeric Switching of an On-Surface Formed Dinuclear Organocobalt Complex. , 2017, ACS nano.

[18]  G. Xu,et al.  Stabilizing surface Ag adatoms into tunable single atom arrays by terminal alkyne assembly. , 2016, Chemical communications.

[19]  H. Fuchs,et al.  Oberflächen‐Dominoreaktion: Glaser‐Kupplung und dehydrierende Kupplung von Dicarbonsäuren unter Bildung eines polymeren Bisacylperoxids , 2016 .

[20]  H. Fuchs,et al.  On-Surface Domino Reactions: Glaser Coupling and Dehydrogenative Coupling of a Biscarboxylic Acid To Form Polymeric Bisacylperoxides. , 2016, Angewandte Chemie.

[21]  W. Xu,et al.  Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures. , 2016, ACS nano.

[22]  J. Barth,et al.  Surface-Guided Formation of an Organocobalt Complex. , 2016, Angewandte Chemie.

[23]  Youyong Li,et al.  Surface-Controlled Mono/Diselective ortho C-H Bond Activation. , 2016, Journal of the American Chemical Society.

[24]  Yi Luo,et al.  Polyphenylsilole multilayers--an insight from X-ray electron spectroscopy and density functional theory. , 2015, Physical chemistry chemical physics : PCCP.

[25]  J. Barth,et al.  On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. , 2015, Accounts of chemical research.

[26]  G. Xu,et al.  Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces. , 2015, ACS nano.

[27]  J. Barth,et al.  Unusual Deprotonated Alkynyl Hydrogen Bonding in Metal-Supported Hydrocarbon Assembly , 2015 .

[28]  B. Tang,et al.  Two-Dimensional Hierarchical Supramolecular Assembly of a Silole Derivative and Surface-Assisted Chemical Transformations , 2015 .

[29]  R. M. Lambert,et al.  Sonogashira cross-coupling and homocoupling on a silver surface: chlorobenzene and phenylacetylene on Ag(100). , 2015, Journal of the American Chemical Society.

[30]  S. Hecht,et al.  Substrate-controlled linking of molecular building blocks: Au(111) vs. Cu(111) , 2014 .

[31]  K. Müllen,et al.  Cyclotrimerization of arylalkynes on Au(111). , 2014, Chemical communications.

[32]  Huijun Zhao,et al.  Two-dimensional carbon leading to new photoconversion processes. , 2014, Chemical Society reviews.

[33]  Lizhi Zhang,et al.  Direct visualization of surface-assisted two-dimensional diyne polycyclotrimerization. , 2014, Journal of the American Chemical Society.

[34]  Huibiao Liu,et al.  Graphdiyne and graphyne: from theoretical predictions to practical construction. , 2014, Chemical Society reviews.

[35]  J. Barth,et al.  Synthesis of extended graphdiyne wires by vicinal surface templating. , 2014, Nano letters.

[36]  J. Barth,et al.  Unraveling the Mechanism of the Covalent Coupling Between Terminal Alkynes on a Noble Metal , 2014 .

[37]  J. Barth,et al.  2 D Self‐Assembly and Catalytic Homo‐coupling of the Terminal Alkyne 1,4‐Bis(3,5‐diethynyl‐phenyl)butadiyne‐1,3 on Ag(111) , 2013 .

[38]  H. Fuchs,et al.  Effect of metal surfaces in on-surface glaser coupling , 2013 .

[39]  H. Fuchs,et al.  Glaser‐Kupplungen auf Metalloberflächen , 2013 .

[40]  H. Fuchs,et al.  Glaser coupling at metal surfaces. , 2013, Angewandte Chemie.

[41]  W. Heckl,et al.  On-surface polymerization of 1,4-diethynylbenzene on Cu(111). , 2013, Chemical communications.

[42]  Jonas Björk,et al.  Homo-coupling of terminal alkynes on a noble metal surface , 2012, Nature Communications.

[43]  J. Martín-Gago,et al.  On-surface synthesis of cyclic organic molecules. , 2011, Chemical Society reviews.

[44]  Lizhi Zhang,et al.  Graphyne- and Graphdiyne-based Nanoribbons: Density Functional Theory Calculations of Electronic Structures , 2011, 1211.4310.

[45]  Kwanghee Lee,et al.  Novel Film‐Casting Method for High‐Performance Flexible Polymer Electrodes , 2011 .

[46]  A. De Vita,et al.  Influence of subsurface layers on the adsorption of large organic molecules on close-packed metal surfaces. , 2011, ACS nano.

[47]  A. Hirsch The era of carbon allotropes. , 2010, Nature materials.

[48]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[49]  R. M. Lambert,et al.  Sonogashira coupling on an extended gold surface in vacuo: reaction of phenylacetylene with iodobenzene on Au(111). , 2010, Journal of the American Chemical Society.

[50]  François Diederich,et al.  All‐Carbon Scaffolds by Rational Design , 2010, Advanced materials.

[51]  F. Rosei,et al.  Synthesis of polyphenylene molecular wires by surface-confined polymerization. , 2009, Small.

[52]  M. Persson,et al.  Nano-architectures by covalent assembly of molecular building blocks. , 2007, Nature nanotechnology.

[53]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[54]  Theodora W. Greene,et al.  Greene's Protective Groups in Organic Synthesis , 2006 .

[55]  Michele Muccini,et al.  Organic Light‐Emitting Transistors Based on Solution‐Cast and Vacuum‐Sublimed Films of a Rigid Core Thiophene Oligomer , 2006 .

[56]  C. Joachim,et al.  Tailoring molecular self-organization by chemical synthesis: Hexaphenylbenzene, hexa-peri-hexabenzocoronene, and derivatives on Cu (111) , 2005 .

[57]  Klaus Müllen,et al.  Templateffekte bei der Herstellung polycyclischer aromatischer Kohlenwasserstoffe: Cyclodehydrierung und Planarisierung eines Hexaphenylbenzols an einer Kupferoberfläche , 1999 .

[58]  C. Wöll,et al.  Template-Mediated Synthesis of Polycyclic Aromatic Hydrocarbons: Cyclodehydrogenation and Planarization of a Hexaphenylbenzene Derivative at a Copper Surface. , 1999, Angewandte Chemie.

[59]  Shugo Suzuki,et al.  Optimized geometries and electronic structures of graphyne and its family , 1998 .

[60]  G. Whitesides,et al.  Synthesis of high carbon materials from acetylenic precursors. Preparation of aromatic monomers bearing multiple ethynyl groups , 1988 .

[61]  Wifredo Ricart,et al.  The version of record : , 2018 .

[62]  Teodoro Laino,et al.  Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. , 2011, Nature chemistry.