Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR
暂无分享,去创建一个
[1] D. Rothery,et al. Volcano monitoring using short wavelength infrared data from satellites , 1988 .
[2] S. Anderson,et al. Mount St. Helens and Santiaguito lava domes: The effect of short-term eruption rate on surface texture and degassing processes , 1995 .
[3] G. S. Gorshkov. Gigantic eruption of the volcano bezymianny , 1959 .
[4] P. Christensen,et al. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner , 1993 .
[5] M. Abrams. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .
[6] K. Dean,et al. Satellite monitoring of remote volcanoes improves study efforts in Alaska , 1998 .
[7] Yoram J. Kaufman,et al. Earth Observing System AM1 mission to Earth , 1998, IEEE Trans. Geosci. Remote. Sens..
[8] D. Schneider,et al. Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory : Case study for Kamchatka, Russia, December 1997 , 2013 .
[9] E. P. McClam,et al. A Method for Satellite Identification of Surface Temperature Fields of Subpixel Resolution , 2002 .
[10] M. Ramsey,et al. Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring , 1999 .
[11] Jeffrey S. Kargel,et al. Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target: glaciers , 2000, IEEE Trans. Geosci. Remote. Sens..
[12] S. Raccichini,et al. JOURNAL OF VULCANOLOGY AND GEOTHERMAL RESEARCH , 2013 .
[13] Vincent J. Realmuto,et al. The use of multispectral thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: A case study from Mount Etna, Sicily, July 29, 1986 , 1994 .
[14] Arlin J. Krueger,et al. Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR , 1999 .
[15] M. Ramsey,et al. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers , 2001 .
[16] Bruce F. Houghton,et al. The encyclopedia of volcanoes , 1999 .
[17] H Kieffer Hugh,et al. Thermal infrared surveys at Mount St. Helens; observations prior to the eruption of May 18 , 1981 .
[18] Clive Oppenheimer,et al. Lava flow cooling estimated from Landsat Thematic Mapper infrared data: The Lonquimay Eruption (Chile, 1989) , 1991 .
[19] John W. Salisbury,et al. Emissivity of terrestrial materials in the 8-14 microns atmospheric window , 1992 .
[20] A. Kahle. Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California , 1987 .
[21] Jonathan Dehn,et al. Thermal monitoring of North Pacific volcanoes from space , 2000 .
[22] Alan R. Gillespie,et al. Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1996, Optics & Photonics.
[23] S. Anderson,et al. Textural constraints on effusive silicic volcanism - Beyond the permeable foam model , 1992 .
[24] D. Crown,et al. Emplacement and composition of steep‐sided domes on Venus , 2000 .
[25] G. S. Gorshkov,et al. Gigantic directed blast at Shiveluch volcano (Kamchatka) , 1970 .
[26] Anne B. Kahle,et al. Thermal infrared spectral character of Hawaiian basaltic glasses , 1990 .
[27] L. Keszthelyi,et al. Calculation of lava effusion rates from Landsat TM data , 1998 .
[28] M. Wooster,et al. Satellite thermal analyses of lava dome effusion rates at Unzen Volcano, Japan , 1998 .
[29] J. Salisbury,et al. Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .
[30] M. Ramsey,et al. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .
[31] D. Sampson. Textural heterogeneities and vent area structures in the 600-year-old lavas of the Inyo volcanic chain, eastern California , 1987 .
[32] Hiroshi Murakami,et al. ASTER as a source for topographic data in the late 1990s , 1998, IEEE Trans. Geosci. Remote. Sens..
[33] Stephen R. McNutt,et al. Satellite imagery proves essential for monitoring erupting Aleutian Volcano , 2002 .
[34] Yasushi Yamaguchi,et al. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..
[35] David A. Crown,et al. Surface unit characterization of the Mauna Ulu flow field, Kilauea Volcano, Hawai'i, using integrated field and remote sensing analyses , 2004 .
[36] Robert Wright,et al. Remote monitoring of Mount Erebus Volcano, antarctica, using Polar Orbiters : Progress and Prospects , 1999 .
[37] Joy A. Crisp,et al. Remote Sensing of Active Volcanism , 2000 .
[38] A. Harris,et al. The thermal stealth flows of Santiaguito dome, Guatemala: Implications for the cooling and emplacement of dacitic block-lava flows , 2002 .
[39] Shuichi Rokugawa,et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..
[40] Alfred J Prata,et al. Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data , 1989 .
[41] Eric Pilger,et al. A Global Thermal Alert System Using MODIS: Initial Results from 2000-2001 , 2002 .
[42] Clive Oppenheimer,et al. Infrared surveillance of crater lakes using satellite data , 1993 .
[43] S. Anderson,et al. The Development and Distribution of Surface Textures at the Mount St. Helens Dome , 1990 .
[44] Jeffrey S. Kargel,et al. Remote-sensing science and technology for studying glacier processes in high Asia , 2000, Annals of Glaciology.
[45] S. Anderson,et al. Crease structures: Indicators of emplacement rates and surface stress regimes of lava flows , 1992 .
[46] J. Fink. The Emplacement of silicic domes and lava flows , 1987 .
[47] D. Crown,et al. Block size distributions on silicic lava flow surfaces: Implications for emplacement conditions , 1998 .
[48] A. Harris,et al. Automated, high temporal resolution, thermal analysis of Kilauea volcano, Hawai'i, using GOES satellite data , 2001 .
[49] Peter I. Miller,et al. Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus , 1997 .
[50] S. Nakada,et al. Endogenous growth of dacite dome at Unzen volcano (Japan), 1993-1994 , 1995 .
[51] David C. Pieri,et al. ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit , 2004 .
[52] L. Glaze,et al. Measuring thermal budgets of active volcanoes by satellite remote sensing , 1989, Nature.
[53] J. Fink,et al. Origin of pumiceous and glassy textures in rhyolite flows and domes , 1987 .
[54] G. Colbath. Comment and Reply on “Temperature and biotic crises in the marine realm” COMMENT , 1985 .
[55] Sergeĭ Aleksandrovich Fedotov,et al. Действующие вулканы Камчатки = Active volcanoes of Kamchatka , 1991 .