Re‐evaluation of the bond length–bond strength rule: The stronger bond is not always the shorter bond

A set of 42 molecules with N‐F, O‐F, N‐Cl, P‐F, and As‐F bonds has been investigated in the search for potential bond anomalies, which lead to reverse bond length–bond strength (BLBS) relationships. The intrinsic strength of each bond investigated has been determined by the local stretching force constant obtained at the CCSD(T)/aug‐cc‐pVTZ level of theory. N‐F or O‐F bond anomalies were found for fluoro amine radicals, fluoro amines, and fluoro oxides, respectively. A rationale for the deviation from the normal Badger‐type inverse BLBS relation is given and it is shown that electron withdrawal accompanied by strong orbital contraction and bond shortening is one of the prerequisites for a bond anomaly. In the case of short electron‐rich bonds such as N‐F or O‐F, anomeric delocalization of lone pair electrons in connection with lone pair repulsion are decisive whether a bond anomaly can be observed. This is quantitatively assessed with the help of the CCSD(T) local stretching force constants, CCSD(T) charge distributions, and G4 bond dissociation energies. Bond anomalies are not found for fluoro phosphines and fluoro arsines because the bond weakening effects are no longer decisive. © 2015 Wiley Periodicals, Inc.

[1]  R. Atalla,et al.  Infrared Spectrum of Methyldifluoramine , 1966 .

[2]  D. Cremer,et al.  A Comprehensive Analysis of Hydrogen Bond Interactions Based on Local Vibrational Modes , 2012 .

[3]  J. Murray,et al.  Atomic polarizability, volume and ionization energy , 2002 .

[4]  D. Cremer,et al.  Revision of the dissociation energies of mercury chalcogenides--unusual types of mercury bonding. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  B. A. Lindquist,et al.  Bonding in FSSF3: Breakdown in Bond Length-Strength Correlations and Implications for SF2 Dimerization , 2013 .

[6]  D. Cremer,et al.  Chiral discrimination by vibrational spectroscopy utilizing local modes. , 2013, Chirality.

[7]  D. Cremer,et al.  Efficient density-functional theory integrations by locally augmented radial grids. , 2007, The Journal of chemical physics.

[8]  Jürgen Gauss,et al.  Parallel Calculation of CCSD and CCSD(T) Analytic First and Second Derivatives. , 2008, Journal of chemical theory and computation.

[9]  R. Bader VIBRATIONALLY INDUCED PERTURBATIONS IN MOLECULAR ELECTRON DISTRIBUTIONS , 1962 .

[10]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[11]  E. Kraka,et al.  Structure, vibrational spectra, and unimolecular dissociation of gaseous 1-fluoro-1-phenethyl cations. , 2008, The journal of physical chemistry. A.

[12]  D. Cremer,et al.  Are carbon—halogen double and triple bonds possible? , 2014 .

[13]  J. Shreeve,et al.  An unusual relationship between the nitrogen-fluorine bond lengths and force constants in N-fluoroamines , 1991 .

[14]  D. Cremer,et al.  Description of aromaticity with the help of vibrational spectroscopy: anthracene and phenanthrene. , 2014, The journal of physical chemistry. A.

[15]  Hyunyong Kim,et al.  Millimeter‐Wave Spectrum and Structure of Hypofluorous Acid: HOF and DOF , 1972 .

[16]  T. Moeller,et al.  THE CHEMICAL BOND , 1980 .

[17]  Clark R. Landis,et al.  NBO 6.0: Natural bond orbital analysis program , 2013, J. Comput. Chem..

[18]  D. Christen,et al.  Theoretical study of fluorinated amines , 1988 .

[19]  P. Pyykkö Dirac-Fock One-Centre Calculations Part 8. The 1Σ States of ScH, YH, LaH, AcH, TmH, LuH and LrH , 1979 .

[20]  Bernhard Metz,et al.  Breakdown of Bond Length-Bond Strength Correlation: A Case Study This work was supported by Deutsche Forschungsgemeinschaft and by Fonds der Chemischen Industrie. , 2000, Angewandte Chemie.

[21]  Sebastian Riedel,et al.  On the lack of correlation between bond lengths, dissociation energies, and force constants: the fluorine-substituted ethane homologues ☆ , 2004 .

[22]  D. Cremer,et al.  Characterization of CF bonds with multiple-bond character: bond lengths, stretching force constants, and bond dissociation energies. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  D. Cremer,et al.  Bonding in mercury molecules described by the normalized elimination of the small component and coupled cluster theory. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  J. Grunenberg Computational Spectroscopy: Methods, Experiments and Applications , 2010 .

[25]  D. Cremer,et al.  Relating normal vibrational modes to local vibrational modes: benzene and naphthalene , 2013, Journal of Molecular Modeling.

[26]  D. Cremer,et al.  Vibrational Properties of the Isotopomers of the Water Dimer Derived from Experiment and Computations , 2014 .

[27]  D. Cremer,et al.  11,11-dimethyl-1,6-methano[10]annulene--an annulene with an ultralong CC bond or a fluxional molecule? , 2015, The journal of physical chemistry. A.

[28]  Jinbo Hu,et al.  Synthesis of fluorinated chiral amines using N-tert-butylsulfinyl imines. , 2009, Future medicinal chemistry.

[29]  R. Jackson,et al.  Centrifugal Distortion Effects in Asymmetric Rotor Molecules. I. Quadratic Potential Constants and Average Structure of Oxygen Difluoride from the Ground‐State Rotational Spectrum , 1963 .

[30]  L. Curtiss,et al.  Gaussian-4 theory. , 2007, The Journal of chemical physics.

[31]  D. Cremer,et al.  Strength of the pnicogen bond in complexes involving group Va elements N, P, and As. , 2015, The journal of physical chemistry. A.

[32]  W. Kutzelnigg Orthogonal and non-orthogonal hybrids , 1988 .

[33]  M. Pryce,et al.  Studies of the Jahn-Teller effect. I. A survey of the static problem , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  D. Cremer,et al.  New approach to Tolman's electronic parameter based on local vibrational modes. , 2014, Inorganic chemistry.

[35]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[36]  唐诗雅,et al.  铬族金属氢化物中M-H 键键能的从头计算 , 2012 .

[37]  Isaac B. Bersuker,et al.  The Jahn-Teller Effect , 2006 .

[38]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[39]  L. Halonen,et al.  Equilibrium structure and anharmonic force field of hypofluorous acid (HOF) , 1988 .

[40]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[41]  J. Burdett,et al.  Orbital Interactions in Chemistry: Albright/Orbital Interactions in Chemistry , 2013 .

[42]  Peter Politzer,et al.  Relationship between dissociation energies, force constants, and bond lengths for some N–F and O–F bonds , 1993 .

[43]  D. Cremer,et al.  Generalization of the Badger Rule Based on the Use of Adiabatic Vibrational Modes , 2010 .

[44]  D. Cremer,et al.  Local vibrational modes of the formic acid dimer – the strength of the double hydrogen bond , 2013 .

[45]  P. Politzer Some anomalous properties of oxygen and nitrogen , 1977 .

[46]  Comparison of Gold Bonding with Mercury Bonding , 2009 .

[47]  Zoran Konkoli,et al.  A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes , 1998 .

[48]  R. Pearson The second-order Jahn-Teller effect , 1983 .

[49]  David R. Wilson,et al.  Longer but Stronger Bonds: Structures of PF3, P(OEt)3, and PMe3 Adducts of an Open Titanocene , 1995 .

[50]  E. G. Rochow,et al.  A scale of electronegativity based on electrostatic force , 1958 .

[51]  Richard M. Badger,et al.  The Relation Between the Internuclear Distances and Force Constants of Molecules and Its Application to Polyatomic Molecules , 1935 .

[52]  Donald F. Hornig,et al.  Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra. , 1956 .

[53]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[54]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[55]  D. Cremer,et al.  Identification of the strongest bonds in chemistry. , 2013, The journal of physical chemistry. A.

[56]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[57]  Clark R. Landis,et al.  Valency and Bonding: Author index , 2005 .

[58]  Elfi Kraka,et al.  Some Thoughts about Bond Energies, Bond Lengths, and Force Constants , 2000 .

[59]  R. J. Boyd,et al.  Effects of electron correlation on the series C2HnF6-n (n = 0-6) : geometries, total energies, and C-C and C-H bond dissociation energies , 1993 .

[60]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[61]  D. Cremer,et al.  Description of pnicogen bonding with the help of vibrational spectroscopy—The missing link between theory and experiment , 2014 .

[62]  Dieter Cremer and Elfi Kraka From Molecular Vibrations to Bonding, Chemical Reactions, and Reaction Mechanism , 2010 .

[63]  L. Bartell A structural chemist’s entanglement with Gillespie’s theories of molecular geometry , 2000 .

[64]  D. Cremer,et al.  Quantitative assessment of the multiplicity of carbon-halogen bonds: carbenium and halonium ions with F, Cl, Br, and I. , 2014, The journal of physical chemistry. A.

[65]  R. M. Badger A Relation Between Internuclear Distances and Bond Force Constants , 1934 .

[66]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[67]  D. Cremer,et al.  Local vibrational modes of the water dimer - Comparison of theory and experiment , 2012 .

[68]  E. Jones Theoretical Organic Chemistry , 1943, Nature.

[69]  P. Politzer,et al.  Anomalous properties of halogen substituents , 1972 .

[70]  S. Saito,et al.  Microwave spectrum of oxygen difluoride in vibrationally excited states; ν1 - 2ν2 Fermi resonance and equilibrium structure , 1966 .

[71]  H. Matsuura,et al.  Relationship between force constants and bond lengths for CX (X = C, Si, Ge, N, P, As, O, S, Se, F, Cl and Br) single and multiple bonds: formulation of Badger's rule for universal use. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[72]  S. Carter,et al.  Analytical potentials for triatomic molecules from spectroscopic data: V. Application to HOX (X=F, Cl, Br, I) , 1979 .

[73]  S. Papson “Model” , 1981 .

[74]  D. Cremer,et al.  Properties of local vibrational modes: the infrared intensity , 2014, Theoretical Chemistry Accounts.

[75]  C. Garner Transition metal compounds , 1976, Nature.

[76]  R. Jackson 884. The microwave spectrum, structure, and dipole moment of dioxygen difluoride , 1962 .

[77]  D. Cremer,et al.  Quantum Chemical Descriptions of FOOF: The Unsolved Problem of Predicting Its Equilibrium Geometry , 2001 .

[78]  P. Schleyer,et al.  Ab initio study of structures and stabilities of substituted lead compounds. Why is inorganic lead chemistry dominated by PbII but organolead chemistry by PbIV , 1993 .

[79]  P. Politzer Anomalous properties of fluorine , 1969 .

[80]  W. Kutzelnigg Chemical Bonding in Higher Main Group Elements , 1984 .

[81]  Martin Kaupp,et al.  The role of radial nodes of atomic orbitals for chemical bonding and the periodic table , 2007, J. Comput. Chem..

[82]  Clark R. Landis,et al.  Valency and Bonding: Contents , 2005 .

[83]  R. Pearson The transition-metal-hydrogen bond , 1985 .

[84]  Peter Politzer,et al.  Electrostatic potentials and covalent radii , 2003, J. Comput. Chem..

[85]  P. Schwerdtfeger,et al.  Trends in Inversion Barriers of Group 15 Compounds. 2. Ab-Initio and Density Functional Calculations on Group 15 Fluorides , 1994 .

[86]  R. D. Ernst,et al.  Equilibria studies involving ligand coordination to open titanocenes: phosphine and pentadienyl cone angle influences and the existence of these electron-deficient molecules , 1987 .

[87]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[88]  Clark R. Landis,et al.  Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective , 2005 .

[89]  Myung-Hwan Whangbo,et al.  Orbital Interactions in Chemistry , 1985 .