Advanced Phosphorus‐Based Materials for Lithium/Sodium‐Ion Batteries: Recent Developments and Future Perspectives

[1]  E. Kan,et al.  Theoretical Prediction of Phosphorene and Nanoribbons As Fast-Charging Li Ion Battery Anode Materials , 2015 .

[2]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[3]  Eugenie Samuel Reich,et al.  Phosphorene excites materials scientists , 2014, Nature.

[4]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[5]  Mohammad Asadi,et al.  High‐Quality Black Phosphorus Atomic Layers by Liquid‐Phase Exfoliation , 2015, Advanced materials.

[6]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[7]  Y. Maruyama,et al.  Synthesis and some properties of black phosphorus single crystals , 1981 .

[8]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[9]  Li‐Min Liu,et al.  Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries , 2015 .

[10]  Huisheng Peng,et al.  Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. , 2015, ACS nano.

[11]  Zonghai Chen,et al.  Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. , 2016, Nano letters.

[12]  Xiaodong Chen,et al.  Wet‐Chemical Processing of Phosphorus Composite Nanosheets for High‐Rate and High‐Capacity Lithium‐Ion Batteries , 2016 .

[13]  P. Thordarson,et al.  Gram-scale production of graphene based on solvothermal synthesis and sonication. , 2009, Nature nanotechnology.

[14]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[15]  T. W. DeWitt,et al.  Conversion of Liquid White Phosphorus to Red Phosphorus. I. Kinetics of the Reaction1 , 1946 .

[16]  M. Whittingham,et al.  Characterization of Amorphous and Crystalline Tin–Cobalt Anodes , 2007 .

[17]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[18]  P. Ajayan,et al.  Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. , 2013, Nano letters.

[19]  Changfeng Chen,et al.  Phosphorene: Fabrication, Properties, and Applications. , 2015, The journal of physical chemistry letters.

[20]  Osamu Shimomura,et al.  A first-order liquid–liquid phase transition in phosphorus , 2000, Nature.

[21]  Jiantong Li,et al.  Inkjet printing of 2D layered materials. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  A. Manthiram,et al.  High-Performance Red P-Based P–TiP2–C Nanocomposite Anode for Lithium-Ion and Sodium-Ion Storage , 2016 .

[23]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[24]  J. Tarascon,et al.  Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .

[25]  T. Kawamura,et al.  Compression behavior of CdS and BP up to 68 GPa , 1983 .

[26]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[27]  S. Shi,et al.  Ab initio studies on atomic and electronic structures of black phosphorus , 2010 .

[28]  I. Shirotani Growth of Large Single Crystals of Black Phosphorus at High Pressures and Temperatures, and its Electrical Properties , 1982 .

[29]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[30]  M. Winter,et al.  Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries , 2013 .

[31]  Qiliang Wei,et al.  Stem-like nano-heterostructural MWCNTs/α-Fe2O3@TiO2 composite with high lithium storage capability , 2016 .

[32]  Jianjun Li,et al.  Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. , 2012, Angewandte Chemie.

[33]  E. Peled,et al.  Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation , 1996 .

[34]  Yang‐Kook Sun,et al.  Nanostructured metal phosphide-based materials for electrochemical energy storage , 2016 .

[35]  Yong-Mook Kang,et al.  Urchin‐Like CoSe2 as a High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[36]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[37]  J. Coleman,et al.  Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. , 2016, Small.

[38]  Xiaobo Ji,et al.  Size-Tunable Olive-Like Anatase TiO2 Coated with Carbon as Superior Anode for Sodium-Ion Batteries. , 2016, Small.

[39]  S. Licht,et al.  A Solid Sulfur Cathode for Aqueous Batteries , 1993, Science.

[40]  Martin Pumera,et al.  Schwarzer Phosphor neu entdeckt: vom Volumenmaterial zu Monoschichten , 2017 .

[41]  J. Liang,et al.  Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a High‐Performance Anode for Sodium‐Ion Batteries , 2015 .

[42]  J. Tarascon,et al.  The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries , 2016 .

[43]  Bruce Dunn,et al.  Multidimensional materials and device architectures for future hybrid energy storage , 2016, Nature Communications.

[44]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[45]  Zhichuan J. Xu,et al.  An Air‐Stable Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties , 2016 .

[46]  Erik J. Berg,et al.  Interface and Safety Properties of Phosphorus-Based Negative Electrodes in Li-Ion Batteries , 2017 .

[47]  Lin Gu,et al.  Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. , 2016, Nano letters.

[48]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[49]  Klaus Müllen,et al.  3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. , 2012, Journal of the American Chemical Society.

[50]  Yang Zheng,et al.  Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vapor‐Redistribution for High‐Energy Sodium‐Ion Batteries , 2016 .

[51]  S. Suga,et al.  Electrical and optical properties of black phosphorus single crystals , 1983 .

[52]  R. Hultgren,et al.  The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus , 1935 .

[53]  Yong-Wei Zhang,et al.  Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene , 2014, Scientific reports.

[54]  D. Choi,et al.  Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. , 2014, Nano letters.

[55]  Y. Chang,et al.  Long-term stability study of graphene-passivated black phosphorus under air exposure , 2016 .

[56]  Hao Sun,et al.  Phosphorene as a Polysulfide Immobilizer and Catalyst in High‐Performance Lithium–Sulfur Batteries , 2017, Advanced materials.

[57]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[58]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[59]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[60]  Yongchang Liu,et al.  Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries , 2017 .

[61]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[62]  O. Malyi,et al.  Phosphorene as an anode material for Na-ion batteries: a first-principles study. , 2015, Physical chemistry chemical physics : PCCP.

[63]  L. Monconduit,et al.  Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism , 2012 .

[64]  Nidhi Singh,et al.  Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly , 2016, Scientific reports.

[65]  Dongyuan Zhao,et al.  Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework , 2014, Advanced materials.

[66]  J. Novaković,et al.  Characterization and corrosion resistance of duplex electroless Ni-P composite coatings on magnesium alloy , 2013 .

[67]  Changsheng Cao,et al.  Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. , 2017, Nanoscale.

[68]  T. Horiba,et al.  High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries , 2017 .

[69]  L. Monconduit,et al.  Electrochemical reaction of lithium with CoP3 , 2002 .

[70]  H. Krebs,et al.  Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors , 1955 .

[71]  Y. Akahama,et al.  Electrical properties of single-crystal black phosphorus under pressure , 1986 .

[72]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[73]  F. Favier,et al.  Activated-phosphorus as new electrode material for Li-ion batteries , 2011 .

[74]  Marc D. Walter,et al.  Inexpensive Antimony Nanocrystals and Their Composites with Red Phosphorus as High-Performance Anode Materials for Na-ion Batteries , 2015, Scientific Reports.

[75]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[76]  Xiaodong Zhu,et al.  Molecular level distribution of black phosphorus quantum dots on nitrogen-doped graphene nanosheets for superior lithium storage , 2016 .

[77]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[78]  Koichi Yamashita,et al.  Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface , 2016 .

[79]  Li‐Min Liu,et al.  Phosphorene ribbons as anode materials with superhigh rate and large capacity for Li-ion batteries , 2016 .

[80]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[81]  H. Shu,et al.  Porous hollow α-Fe2O3@TiO2 core–shell nanospheres for superior lithium/sodium storage capability , 2015 .

[82]  Liangzhi Kou,et al.  Anisotropic Ripple Deformation in Phosphorene. , 2015, The journal of physical chemistry letters.

[83]  H. Su,et al.  Phosphorene: from theory to applications , 2016 .

[84]  Erik J. Berg,et al.  Understanding the Interaction of the Carbonates and Binder in Na-Ion Batteries: A Combined Bulk and Surface Study , 2015 .

[85]  A. Morita,et al.  Electronic Structure of Black Phosphorus in Self-Consistent Pseudopotential Approach , 1982 .

[86]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[87]  T. D. Hatchard,et al.  Study of the Electrochemical Performance of Sputtered Si1 − x Sn x Films , 2004 .

[88]  S. Qiao,et al.  Correction: 2D phosphorene as a water splitting photocatalyst: fundamentals to applications , 2016 .

[89]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[90]  Dan Xu,et al.  Dendritic Ni‐P‐Coated Melamine Foam for a Lightweight, Low‐Cost, and Amphipathic Three‐Dimensional Current Collector for Binder‐Free Electrodes , 2014, Advanced materials.

[91]  M. Duggin A High Pressure Phase in Arsenic and its Relation to Pressure-Induced Phase Changes in Group 5b Elements , 1972 .

[92]  S. Clark,et al.  Compressibility of cubic white, orthorhombic black, rhombohedral black, and simple cubic black phosphorus , 2010 .

[93]  Jiangfeng Qian,et al.  Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries , 2010 .

[94]  S. Ye,et al.  Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries , 2015 .

[95]  Yong Lei,et al.  Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition , 2016 .

[96]  M. Liu,et al.  Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. , 2017, Chemical Society reviews.

[97]  S. Dou,et al.  Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C) , 2016 .

[98]  X. Tao,et al.  Facile fabrication of red phosphorus/TiO2 composites for lithium ion batteries , 2014 .

[99]  Wei Li,et al.  Hybrid phosphorene/graphene nanocomposite as an anode material for Na-ion batteries: a first-principles study , 2017 .

[100]  Jing Chen,et al.  Scalable Clean Exfoliation of High‐Quality Few‐Layer Black Phosphorus for a Flexible Lithium Ion Battery , 2016, Advanced materials.

[101]  Xiangming He,et al.  Composite of graphite/phosphorus as anode for lithium-ion batteries , 2015 .

[102]  Hao Liu,et al.  First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. , 2015, The journal of physical chemistry letters.

[103]  Hsing-Yu Tuan,et al.  Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. , 2017, Nano letters.

[104]  Jer-Lai Kuo,et al.  Theoretical Prediction of Anode Materials in Li-Ion Batteries on Layered Black and Blue Phosphorus , 2015 .

[105]  Dongdong Liu,et al.  Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery. , 2017, Small.

[106]  S. Haigh,et al.  Production of few-layer phosphorene by liquid exfoliation of black phosphorus. , 2014, Chemical communications.

[107]  Thomas Dienel,et al.  Controlled synthesis of single-chirality carbon nanotubes , 2014, Nature.

[108]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[109]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[110]  Y. Bando,et al.  Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. , 2016, Nano letters.

[111]  Wilson A. Crichton,et al.  Phosphorus: New in situ powder data from large-volume apparatus , 2003, Powder Diffraction.

[112]  Kai Huang,et al.  A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors , 2017 .

[113]  Gang Zhao,et al.  A Novel Mild Phase-Transition to Prepare Black Phosphorus Nanosheets with Excellent Energy Applications. , 2017, Small.

[114]  Jundong Shao,et al.  From Black Phosphorus to Phosphorene: Basic Solvent Exfoliation, Evolution of Raman Scattering, and Applications to Ultrafast Photonics , 2015 .

[115]  O. Schmidt,et al.  Engineered nanomembranes for smart energy storage devices. , 2016, Chemical Society reviews.

[116]  Xuan Cao,et al.  Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries. , 2017, ACS nano.

[117]  Wei Huang,et al.  Black phosphorus quantum dots. , 2015, Angewandte Chemie.

[118]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[119]  Richard Martel,et al.  Photooxidation and quantum confinement effects in exfoliated black phosphorus. , 2015, Nature materials.

[120]  Zhiwei Xu,et al.  Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries , 2017 .

[121]  T. G. Worlton,et al.  Effect of pressure on bonding in black phosphorus , 1979 .

[122]  Yang‐Kook Sun,et al.  The Application of Metal Sulfides in Sodium Ion Batteries , 2017 .

[123]  P. W. Bridgman TWO NEW MODIFICATIONS OF PHOSPHORUS. , 1914 .

[124]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[125]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[126]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[127]  A. Manthiram,et al.  Polysulfide‐Shuttle Control in Lithium‐Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON‐Type Solid Electrolyte , 2016 .

[128]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[129]  Yuerui Lu,et al.  Optical tuning of exciton and trion emissions in monolayer phosphorene , 2015, Light: Science & Applications.

[130]  L. Nazar,et al.  Reversible Lithium Uptake by FeP2 , 2003 .

[131]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[132]  T. Kikegawa,et al.  An X‐ray diffraction study of lattice compression and phase transition of crystalline phosphorus , 1983 .

[133]  L. Nazar,et al.  Reversible lithium uptake by CoP3 at low potential: role of the anion , 2002 .

[134]  J. Tarascon,et al.  Insertion compounds and composites made by ball milling for advanced sodium-ion batteries , 2016, Nature Communications.

[135]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society Reviews.

[136]  Jun Hu,et al.  Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. , 2015, ACS nano.

[137]  Xiaodong Chen,et al.  Rational material design for ultrafast rechargeable lithium-ion batteries. , 2015, Chemical Society reviews.

[138]  Seung M. Oh,et al.  High-capacity anode materials for sodium-ion batteries. , 2014, Chemistry.

[139]  Shuai Liu,et al.  Structure and properties of Ni–P–graphite (Cg)–TiO2 composite coating , 2015 .

[140]  Tao Gao,et al.  Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. , 2015, ACS nano.

[141]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[142]  J. Shapter,et al.  Efficiency Enhancement of Single‐Walled Carbon Nanotube‐Silicon Heterojunction Solar Cells Using Microwave‐Exfoliated Few‐Layer Black Phosphorus , 2017 .

[143]  J. Sangster Na-P (Sodium-Phosphorus) System , 2010 .

[144]  Donghai Wang,et al.  Phosphorus‐Graphene Nanosheet Hybrids as Lithium‐Ion Anode with Exceptional High‐Temperature Cycling Stability , 2015, Advanced science.

[145]  Vincent M. Rotello,et al.  Self-assembly of nanoparticles into structured spherical and network aggregates , 2000, Nature.

[146]  Dusan Strmcnik,et al.  Energy and fuels from electrochemical interfaces. , 2016, Nature materials.

[147]  Gyu-Tae Kim,et al.  Few-layer black phosphorus field-effect transistors with reduced current fluctuation. , 2014, ACS nano.

[148]  J. Shapter,et al.  Phosphorene and Phosphorene‐Based Materials – Prospects for Future Applications , 2016, Advanced materials.

[149]  Yan Yu,et al.  Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries , 2014 .

[150]  R. Carter,et al.  Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries , 2017 .

[151]  D. Akinwande,et al.  Characterization and sonochemical synthesis of black phosphorus from red phosphorus , 2016 .

[152]  Jun Dai,et al.  Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. , 2014, The journal of physical chemistry letters.

[153]  S. Jung,et al.  Thermodynamic and Kinetic Origins of Lithiation-Induced Amorphous-to-Crystalline Phase Transition of Phosphorus , 2015 .

[154]  A. Morita,et al.  Electronic structure of black phosphorus: Tight binding approach , 1981 .

[155]  J. C. Jamieson Crystal Structures Adopted by Black Phosphorus at High Pressures , 1963, Science.

[156]  Zhixian Zhou,et al.  Polarized photocurrent response in black phosphorus field-effect transistors. , 2014, Nanoscale.

[157]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[158]  S. Dou,et al.  Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries , 2017 .

[159]  D. K. Sang,et al.  Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self‐Powered Photodetector , 2017 .

[160]  M. Mohamedi,et al.  Highly-ordered microporous carbon nanospheres: a promising anode for high-performance sodium-ion batteries , 2016 .

[161]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[162]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[163]  Xinping Ai,et al.  High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg , 2013 .

[164]  Doron Aurbach,et al.  Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes I. Nickel-Rich, LiNixCoyMnzO2 , 2017 .

[165]  K. Kubota,et al.  Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries , 2014 .

[166]  H. Alshareef,et al.  Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage , 2016 .

[167]  R. Jacobs Phosphorus at High Temperatures and Pressures , 1937 .

[168]  G. Vaitheeswaran,et al.  Effect of van der Waals interactions on the structural and elastic properties of black phosphorus , 2012, 1211.3512.

[169]  Hyun-Wook Lee,et al.  Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries , 2016 .

[170]  Sharath Sriram,et al.  Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. , 2015, Small.

[171]  Mohammad Ziaur Rahman,et al.  2D phosphorene as a water splitting photocatalyst: fundamentals to applications , 2016 .

[172]  Zongfu Yu,et al.  Producing air-stable monolayers of phosphorene and their defect engineering , 2016, Nature Communications.

[173]  Gang Zhang,et al.  Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. , 2015, Nano letters.

[174]  Young-Ugk Kim,et al.  Reaction Mechanism of Tin Phosphide Anode by Mechanochemical Method for Lithium Secondary Batteries , 2004 .

[175]  Naoki Nitta,et al.  Influence of Binders, Carbons, and Solvents on the Stability of Phosphorus Anodes for Li-ion Batteries. , 2016, ACS applied materials & interfaces.

[176]  George C Schatz,et al.  Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. , 2016, Nature chemistry.

[177]  Yang Zhao,et al.  Recent Developments and Understanding of Novel Mixed Transition‐Metal Oxides as Anodes in Lithium Ion Batteries , 2016 .

[178]  Yu-Guo Guo,et al.  An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. , 2013, Angewandte Chemie.

[179]  Indranil Lahiri,et al.  Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications , 2017 .

[180]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[181]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[182]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[183]  Klaus Müllen,et al.  3D Graphene Foams Cross‐linked with Pre‐encapsulated Fe3O4 Nanospheres for Enhanced Lithium Storage , 2013, Advanced materials.

[184]  Wei Kang,et al.  The potential application of phosphorene as an anode material in Li-ion batteries , 2014, 1408.3488.

[185]  Yan Yu,et al.  Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery , 2017, Advanced materials.

[186]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[187]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[188]  Jinkui Feng,et al.  A controlled red phosphorus@Ni–P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries , 2017 .

[189]  Klaus Müllen,et al.  A bottom-up approach from molecular nanographenes to unconventional carbon materials , 2008 .

[190]  D. Coker,et al.  Oxygen defects in phosphorene. , 2014, Physical review letters.

[191]  Kunyue Teng,et al.  Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries , 2016 .

[192]  Xinliang Feng,et al.  Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. , 2013, ChemSusChem.

[193]  Thomas M. Higgins,et al.  A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. , 2016, ACS nano.

[194]  J. Jang,et al.  A Top–Down Approach to Fullerene Fabrication Using a Polymer Nanoparticle Precursor , 2004 .

[195]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[196]  Tao Zhang,et al.  Black Phosphorus: Properties, Synthesis, and Applications in Energy Conversion and Storage , 2017 .

[197]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[198]  F. Xia,et al.  The renaissance of black phosphorus , 2015, Proceedings of the National Academy of Sciences.

[199]  Xiangming He,et al.  Effect of Pore Size Distribution of Carbon Matrix on the Performance of Phosphorus@Carbon Material as Anode for Lithium-Ion Batteries , 2016 .

[200]  Min Gyu Kim,et al.  Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery , 2005 .

[201]  Bo Xu,et al.  Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain , 2016 .

[202]  Z. Ong,et al.  Recent Advances in the Study of Phosphorene and its Nanostructures , 2017 .

[203]  Jiangfeng Qian,et al.  Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. , 2012, Chemical communications.

[204]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[205]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[206]  Thermoelectric power of bulk black-phosphorus , 2014, 1411.6468.

[207]  Zhiqun Lin,et al.  Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery , 2015 .

[208]  A. Glushenkov,et al.  Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries , 2015 .

[209]  P. Schmidt,et al.  Au3SnP7@black phosphorus: an easy access to black phosphorus. , 2007, Inorganic chemistry.

[210]  Yanli Zhao,et al.  Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells , 2017 .

[211]  Andres Castellanos-Gomez,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. , 2014, Nature communications.

[212]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[213]  M. Pumera,et al.  Voltammetry of Layered Black Phosphorus: Electrochemistry of Multilayer Phosphorene , 2015 .

[214]  Otto Zhou,et al.  Alloy Formation in Nanostructured Silicon , 2001 .

[215]  F. Dainton X—X and X—O bond energies of phosphorus, arsenic and antimony and their importance in the kinetics of the oxidation of these elements , 1947 .

[216]  Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications , 2016 .

[217]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[218]  T. Nilges,et al.  A fast low-pressure transport route to large black phosphorus single crystals , 2008 .

[219]  S. Lau,et al.  Liquid-phase exfoliation of black phosphorus and its applications , 2017 .

[220]  A. Hayashi,et al.  All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode , 2010 .

[221]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[222]  Tammy Y. Olson,et al.  Synthesis of graphene aerogel with high electrical conductivity. , 2010, Journal of the American Chemical Society.

[223]  Ru Chen,et al.  Bridging Covalently Functionalized Black Phosphorus on Graphene for High-Performance Sodium-Ion Battery. , 2017, ACS applied materials & interfaces.

[224]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[225]  Xiaodong Li,et al.  Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries , 2016 .

[226]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[227]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[228]  Yu Jing,et al.  Phosphorene: what can we know from computations? , 2016 .

[229]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[230]  L. Nazar,et al.  A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry , 2002, Science.

[231]  Phaedon Avouris,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[232]  M. Okajima,et al.  Electrical Investigation of Phase Transition in Black Phosphorus under High Pressure , 1984 .

[233]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[234]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[235]  K. Rissanen,et al.  White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule , 2009, Science.

[236]  Daxian Cao,et al.  A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties. , 2017, Nano letters.

[237]  Xiaobo Ji,et al.  Layer‐Tunable Phosphorene Modulated by the Cation Insertion Rate as a Sodium‐Storage Anode , 2017, Advanced materials.

[238]  P. Lian,et al.  Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review , 2017, Journal of Materials Science.

[239]  H. Hng,et al.  Multifunctional 0D–2D Ni2P Nanocrystals–Black Phosphorus Heterostructure , 2017 .

[240]  Jeremy Barker,et al.  Cathode materials for lithium rocking chair batteries , 1996 .

[241]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[242]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.