Equivalent Circuit and Continuum Modeling of the Impedance of Electrolyte-Filled Pores

Batteries, supercapacitors, and several other electrochemical devices charge by accumulating ions in the pores of electrolyte-immersed porous electrodes. The charging of such devices has long been interpreted using equivalent circuits and the partial differential equations these give rise to. Here, we discuss the validity of the transmission line (TL) circuit and equation for modeling a single electrolyte-filled pore in contact with a reservoir of resistance $R_{r}$. The textbook derivation of the pore-reservoir impedance $R_r+Z_p$ from the TL equation does not correctly account for ionic current conservation at the pore-reservoir interface. However, correcting this shortcoming leads to the same impedance. We also show that the pore impedance $Z_p$ can be derived directly from the TL circuit, bypassing the TL equation completely. The TL circuit assumes equipotential lines in an electrolyte-filled pore to be straight, which is not the case near the pore entrance and end. To determine the importance of these regions, we numerically simulated the charging of pores of different lengths $\ell_p$ and radii $\varrho_p$ through the Poisson-Nernst-Planck equations. We find that pores with aspect ratios beyond $\ell_p/\varrho_p\gtrapprox5$ have impedances in good agreement with $Z_p$.

[1]  W. D. Widanage,et al.  Electrochemical impedance spectroscopy beyond linearity and stationarity - a critical review , 2023, Electrochimica Acta.

[2]  S. Hardt,et al.  Resonant Nanopumps: ac Gate Voltages in Conical Nanopores Induce Directed Electrolyte Flow. , 2022, Physical review letters.

[3]  Zhen Xu,et al.  Asymptotic analysis on charging dynamics for stack-electrode model of supercapacitors , 2022, Proceedings of the Royal Society A.

[4]  Jianbo Zhang,et al.  Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport. , 2022, The Journal of chemical physics.

[5]  D. Howey,et al.  Nonlinear Electrochemical Impedance Spectroscopy for Lithium-Ion Battery Model Parameterization , 2022, Journal of The Electrochemical Society.

[6]  C. Gommes,et al.  The electrical impedance of carbon xerogel hierarchical electrodes , 2022, Electrochimica Acta.

[7]  T. Aslyamov Properties of electrolyte near rough electrodes: capacity and impedance , 2022, Current Opinion in Electrochemistry.

[8]  B. Rotenberg,et al.  Frequency-Dependent Impedance of Nanocapacitors from Electrode Charge Fluctuations as a Probe of Electrolyte Dynamics. , 2022, Physical review letters.

[9]  P. Żuk,et al.  Impact of Asymmetries in Valences and Diffusivities on the Transport of a Binary Electrolyte in a Charged Cylindrical Pore , 2022, SSRN Electronic Journal.

[10]  M. Orazem,et al.  Impedance Analysis of Electrochemical Systems. , 2022, Chemical reviews.

[11]  Jianzhong Wu Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. , 2022, Chemical reviews.

[12]  Honglai Liu,et al.  Microscopic Model for Cyclic Voltammetry of Porous Electrodes. , 2022, Physical review letters.

[13]  Jie Yang,et al.  Simulating the charging of cylindrical electrolyte-filled pores with the modified Poisson-Nernst-Planck equations. , 2022, The Journal of chemical physics.

[14]  B. Rotenberg,et al.  Microscopic Simulations of Electrochemical Double-Layer Capacitors , 2022, Chemical reviews.

[15]  C. Merlet,et al.  Elucidating Curvature-Capacitance Relationships in Carbon-Based Supercapacitors. , 2022, Physical review letters.

[16]  T. Aslyamov,et al.  Analytical solution to the Poisson-Nernst-Planck equations for the charging of a long electrolyte-filled slit pore , 2022, Electrochimica Acta.

[17]  M. Marinescu,et al.  Impedance Response of Ionic Liquids in Long Slit Pores , 2021, Journal of The Electrochemical Society.

[18]  P. Żuk,et al.  Charging dynamics of electrical double layers inside a cylindrical pore: predicting the effects of arbitrary pore size. , 2021, Soft matter.

[19]  J. Bisquert,et al.  Locating the Frequency of Turnover in Thin-Film Diffusion Impedance , 2021, The Journal of Physical Chemistry C.

[20]  Mathijs Janssen Transmission Line Circuit and Equation for an Electrolyte-Filled Pore of Finite Length. , 2021, Physical review letters.

[21]  I. Akhatov,et al.  Electrolyte structure near electrodes with molecular-size roughness. , 2021, Physical review. E.

[22]  M. Gaberšček,et al.  Transmission line models for evaluation of impedance response of insertion battery electrodes and cells , 2021 .

[23]  C. Montella Voigt circuit representation model for electrochemical impedances under finite-length diffusion conditions , 2020 .

[24]  Jianbo Zhang,et al.  Editors’ Choice—Review—Impedance Response of Porous Electrodes: Theoretical Framework, Physical Models and Applications , 2020 .

[25]  I. Akhatov,et al.  Relation between Charging Times and Storage Properties of Nanoporous Supercapacitors , 2020, Nanomaterials.

[26]  Matthew D. Murbach,et al.  impedance.py: A Python package for electrochemical impedance analysis , 2020, J. Open Source Softw..

[27]  Honglai Liu,et al.  Blessing and Curse: How a Supercapacitor's Large Capacitance Causes its Slow Charging. , 2019, Physical review letters.

[28]  J. Rubí,et al.  Driving an electrolyte through a corrugated nanopore. , 2019, The Journal of chemical physics.

[29]  A. Kornyshev,et al.  Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes , 2019, Nature Materials.

[30]  M. Eikerling,et al.  Impedance Resonance in Narrow Confinement , 2018, The Journal of Physical Chemistry C.

[31]  Jun Huang,et al.  Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond , 2018, Electrochimica Acta.

[32]  Bruce Dunn,et al.  Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices , 2018 .

[33]  D. Finegan,et al.  Simulated impedance of diffusion in porous media , 2017 .

[34]  G. Barbero,et al.  Analysis of Warburg's impedance and its equivalent electric circuits. , 2017, Physical chemistry chemical physics : PCCP.

[35]  A. Mani,et al.  Multiscale Model for Electrokinetic Transport in Networks of Pores, Part II: Computational Algorithms and Applications. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[36]  M. Spahr,et al.  Impedance Spectroscopic Studies of the Porous Structure of Electrodes containing Graphite Materials with Different Particle Size and Shape , 2016 .

[37]  Tsuyoshi Sasaki,et al.  Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries , 2015 .

[38]  A. Goriely,et al.  Dynamics of Ion Transport in Ionic Liquids. , 2015, Physical review letters.

[39]  Mohammad Mirzadeh,et al.  Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism. , 2014, Physical review letters.

[40]  Gilbert Strang,et al.  Functions of Difference Matrices Are Toeplitz Plus Hankel , 2014, SIAM Rev..

[41]  P. Taberna,et al.  On the dynamics of charging in nanoporous carbon-based supercapacitors. , 2014, ACS nano.

[42]  A. Kornyshev,et al.  Accelerating charging dynamics in subnanometre pores. , 2013, Nature materials.

[43]  Volker Presser,et al.  Review on the science and technology of water desalination by capacitive deionization , 2013 .

[44]  V. Lvovich Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena , 2012 .

[45]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[46]  P. M. Biesheuvel,et al.  Diffuse charge and Faradaic reactions in porous electrodes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  M. Itagaki,et al.  Complex impedance spectra of porous electrode with fractal structure , 2010 .

[48]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[49]  J. Boyd,et al.  Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model , 2009 .

[50]  G. Sommer,et al.  Reference , 2008 .

[51]  Jiayan Luo,et al.  An Ordered Mesoporous Carbon with Short Pore Length and Its Electrochemical Performances in Supercapacitor Applications , 2007 .

[52]  Hidetsugu Sakaguchi,et al.  Charging dynamics of the electric double layer in porous media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  M. Itagaki,et al.  Impedance analysis on electric double layer capacitor with transmission line model , 2007 .

[54]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  A. Lasia,et al.  Impedance of porous Au based electrodes , 2004 .

[57]  E. Lust,et al.  Influence of nanoporous carbon electrode thickness on the electrochemical characteristics of a nanoporous carbon|tetraethylammonium tetrafluoroborate in acetonitrile solution interface , 2004 .

[58]  E. Lust,et al.  Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors , 2004 .

[59]  O. R. Mattos,et al.  Application of the impedance model of de Levie for the characterization of porous electrodes , 2002 .

[60]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[61]  Yoo,et al.  An electrochemical impedance measurement technique employing Fourier transform , 2000, Analytical chemistry.

[62]  L. Dao,et al.  Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution , 1999 .

[63]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[64]  A. Lasia Impedance of Porous Electrodes , 1995, ECS Transactions.

[65]  J. Gunning The exact impedance of the de Levie grooved electrode , 1995 .

[66]  K. Eloot,et al.  Calculation of the impedance of noncylindrical pores Part II: Experimental verification on pores drilled into stainless steel , 1995 .

[67]  K. Eloot,et al.  Calculation of the impedance of noncylindrical pores Part I: Introduction of a matrix calculation method , 1995 .

[68]  K. Micka,et al.  Theory of the electrochemical impedance of macrohomogeneous porous electrodes , 1993 .

[69]  J. R. Vilche,et al.  Electrochemical impedance spectroscopy on porous electrodes , 1990 .

[70]  R. D. Levie,et al.  Fractals and rough electrodes , 1990 .

[71]  H. Takenouti,et al.  Impedance of a porous electrode with an axial gradient of concentration , 1984 .

[72]  K. Beccu,et al.  Abschätzung der porenstruktur poröser elektroden aus impedanzmessungen , 1976 .

[73]  J. Hall Access resistance of a small circular pore , 1975, The Journal of general physiology.

[74]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[75]  A. Pilla A Transient Impedance Technique for the Study of Electrode Kinetics Application to Potentiostatic Methods , 1970 .

[76]  J. Newman Resistance for Flow of Current to a Disk , 1966 .

[77]  F. A. Posey,et al.  Theory of Potentiostatic and Galvanostatic Charging of the Double Layer in Porous Electrodes , 1966 .

[78]  R. D. Levie,et al.  The influence of surface roughness of solid electrodes on electrochemical measurements , 1965 .

[79]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions: I. Capacitance effects☆ , 1963 .

[80]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[81]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[82]  J. Hjelm,et al.  Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes , 2014 .

[83]  W. Marsden I and J , 2012 .

[84]  Y. Ukyo,et al.  Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell , 2012 .

[85]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy. , 2010, Annual review of analytical chemistry.

[86]  A. Kornyshev,et al.  Optimized Structure of Nanoporous Carbon-Based Double-Layer Capacitors , 2005 .

[87]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[88]  E. Bakker,et al.  Electrochemical sensors. , 2002, Analytical chemistry.