Secure information embedding into 1D biomedical signals based on SPIHT

This paper proposes an encoding system for 1D biomedical signals that allows embedding metadata and provides security and privacy. The design is based on the analysis of requirements for secure and efficient storage, transmission and access to medical tests in e-health environment. This approach uses the 1D SPIHT algorithm to compress 1D biomedical signals with clinical quality, metadata embedding in the compressed domain to avoid extra distortion, digital signature to implement security and attribute-level encryption to support Role-Based Access Control. The implementation has been extensively tested using standard electrocardiogram and electroencephalogram databases (MIT-BIH Arrhythmia, MIT-BIH Compression and SCCN-EEG), demonstrating high embedding capacity (e.g. 3 KB in resting ECGs, 200 KB in stress tests, 30 MB in ambulatory ECGs), short delays (2-3.3s in real-time transmission) and compression of the signal (by ≃3 in real-time transmission, by ≃5 in offline operation) despite of the embedding of security elements and metadata to enable e-health services.

[1]  P. Laguna,et al.  ECG data compression with the Karhunen-Loeve transform , 1996, Computers in Cardiology 1996.

[2]  Zixiang Xiong,et al.  Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT) , 2000, IEEE Trans. Circuits Syst. Video Technol..

[3]  Álvaro Alesanco Iglesias,et al.  Automatic Real-Time ECG Coding Methodology Guaranteeing Signal Interpretation Quality , 2008, IEEE Transactions on Biomedical Engineering.

[4]  M. Akay,et al.  Wavelets for biomedical signal processing , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[5]  Julián Cárdenas-Barrera,et al.  A wavelet-packets based algorithm for EEG signal compression , 2004, Medical informatics and the Internet in medicine.

[6]  D. Perels,et al.  Silicon Implementation of the SPIHT Algorithm for Compression of ECG Records , 2006, 2006 49th IEEE International Midwest Symposium on Circuits and Systems.

[7]  Xu Qian,et al.  Reversible Data Hiding for Electrocardiogram Signal Based on Wavelet Transforms , 2008, 2008 International Conference on Computational Intelligence and Security.

[8]  Catherine E. Chronaki,et al.  Standard-compliant real-time transmission of ECGs: Harmonization of ISO/IEEE 11073-PHD and SCP-ECG , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  Marta Gracia Blanco Mirando por detrás de la protección de datos: un paseo por la ley orgánica de tratamiento automatizado de datos de carácter personal, el "Data Protection Act" y la convención 108 , 1997 .

[10]  Shih-Hsuan Yang,et al.  A Compressed-Domain Image Watermarking Scheme with the SPIHT Coding , 2010, J. Inf. Sci. Eng..

[11]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[12]  Álvaro Alesanco Iglesias,et al.  Interoperability in Digital Electrocardiography: Harmonization of ISO/IEEE x73-PHD and SCP-ECG , 2010, IEEE Transactions on Information Technology in Biomedicine.

[13]  Álvaro Alesanco Iglesias,et al.  A Review on Digital ECG Formats and the Relationships Between Them , 2012, IEEE Transactions on Information Technology in Biomedicine.

[14]  K. A. Loparo,et al.  A watermarking algorithm for polysomnography data , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  William A. Pearlman,et al.  Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm , 2000, IEEE Transactions on Biomedical Engineering.

[16]  Mehmet Engin,et al.  Wavelet Transformation Based Watermarking Technique for Human Electrocardiogram (ECG) , 2005, Journal of Medical Systems.

[17]  K. Srinivasan,et al.  Efficient preprocessing technique for real-time lossless EEG compression , 2010 .

[18]  Arnon D. Cohen,et al.  The weighted diagnostic distortion (WDD) measure for ECG signal compression , 2000, IEEE Transactions on Biomedical Engineering.

[19]  Simon Heron,et al.  Encryption: Advanced Encryption Standard (AES) , 2009 .

[20]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[21]  Omar Farooq,et al.  Digital Watermarking of ECG Data for Secure Wireless Commuication , 2010, 2010 International Conference on Recent Trends in Information, Telecommunication and Computing.

[22]  Roger G. Mark,et al.  Evaluation of the 'TRIM' ECG data compressor , 1988, Proceedings. Computers in Cardiology 1988.

[23]  E. Jones,et al.  Lossy compression of EEG signals using SPIHT , 2011 .

[24]  Marion J. Ball,et al.  E-health: transforming the physician/patient relationship , 2001, Int. J. Medical Informatics.

[25]  George Hripcsak,et al.  Viewpoint Paper: Clinical Decision Support and Electronic Prescribing Systems: A Time for Responsible Thought and Action , 2005, J. Am. Medical Informatics Assoc..

[26]  Philip S. Yu,et al.  Embedding and Retrieving Private Metadata in Electrocardiograms , 2009, Journal of Medical Systems.

[27]  Álvaro Alesanco Iglesias,et al.  A robust and simple security extension for the medical standard SCP-ECG , 2013, J. Biomed. Informatics.

[28]  Álvaro Alesanco Iglesias,et al.  A Simple Method for Guaranteeing ECG Quality in Real-Time Wavelet Lossy Coding , 2007, EURASIP J. Adv. Signal Process..

[29]  Hans-Peter Seidel,et al.  Multi-video compression in texture space using 4D SPIHT , 2004, IEEE 6th Workshop on Multimedia Signal Processing, 2004..

[30]  G. Eysenbach What is e-health? , 2001, Journal of Medical Internet Research.

[31]  William E. Burr,et al.  Selecting the Advanced Encryption Standard , 2003, IEEE Secur. Priv..

[32]  W. A. Coberly,et al.  ECG data compression techniques-a unified approach , 1990, IEEE Transactions on Biomedical Engineering.

[33]  William P. Marnane,et al.  EEG compression using JPEG2000: How much loss is too much? , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[34]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[35]  Xuan Kong,et al.  Watermarking medical signals for telemedicine , 2001, IEEE Transactions on Information Technology in Biomedicine.