An efficient tree architecture for modulo 2n+1 multiplication
暂无分享,去创建一个
[1] H. T. Kung,et al. A Regular Layout for Parallel Adders , 1982, IEEE Transactions on Computers.
[2] Graham A. Jullien,et al. A New Design Technique for Column Compression Multipliers , 1995, IEEE Trans. Computers.
[3] L. Leibowitz. A simplified binary arithmetic for the Fermat number transform , 1976 .
[4] Fred J. Taylor,et al. A VLSI Residue Arithmetic Multiplier , 1982, IEEE Transactions on Computers.
[5] Irving S. Reed,et al. The VLSI design of a single chip for the multiplication of integers modulo a Fermat number , 1985, IEEE Trans. Acoust. Speech Signal Process..
[6] Satnam Dlay,et al. VLSI design for diminished-1 multiplication of integers modulo a Fermat number , 1988 .
[7] C. Burrus,et al. Fast Convolution using fermat number transforms with applications to digital filtering , 1974 .
[8] M. Etzel,et al. The design of specialized residue classes for efficient recursive digital filter realization , 1982 .
[9] C. W. Slayman,et al. A high-speed high-density silicon 8/spl times/8-bit parallel multiplier , 1987 .
[10] Christopher S. Wallace,et al. A Suggestion for a Fast Multiplier , 1964, IEEE Trans. Electron. Comput..
[11] Hubert Kaeslin,et al. Regular VLSI architectures for multiplication modulo (2/sup n/+1) , 1991 .
[12] Graham A. Jullien,et al. An array processor for inner product computations using a Fermat number ALU , 1995, Proceedings The International Conference on Application Specific Array Processors.
[13] W K Jenkins. Recent advances in residue number techniques for recursive digital filtering , 1979 .
[14] A. Bouridane,et al. Diminished-1 multiplier for a fast convolver and correlator using the Fermat number transform , 1988 .
[15] Vojin G. Oklobdzija,et al. A Method for Speed Optimized Partial Product Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic Approach , 1996, IEEE Trans. Computers.