Visualizing the dynamic structure of the plant photosynthetic membrane

[1]  A. Ruban,et al.  PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. , 2015, Journal of photochemistry and photobiology. B, Biology.

[2]  A. Ruban,et al.  Light-harvesting superstructures of green plant chloroplasts lacking photosystems. , 2015, Plant, cell & environment.

[3]  F. Prinz,et al.  The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes1[OPEN] , 2015, Plant Physiology.

[4]  Adam J. Bell,et al.  High Yield Non-detergent Isolation of Photosystem I-Light-harvesting Chlorophyll II Membranes from Spinach Thylakoids , 2015, The Journal of Biological Chemistry.

[5]  M. Suorsa,et al.  Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I. , 2015, Biochimica et biophysica acta.

[6]  M. Suorsa,et al.  Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light1[OPEN] , 2015, Plant Physiology.

[7]  K. Niyogi,et al.  Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes* , 2015, The Journal of Biological Chemistry.

[8]  T. Ahn,et al.  Changes in antenna sizes of photosystems during state transitions in granal and stroma-exposed thylakoid membrane of intact chloroplasts in Arabidopsis mesophyll protoplasts. , 2015, Plant & cell physiology.

[9]  Sujith Puthiyaveetil,et al.  Compartmentalization of the protein repair machinery in photosynthetic membranes , 2014, Proceedings of the National Academy of Sciences.

[10]  Matthew P. Johnson,et al.  Nanodomains of Cytochrome b6f and Photosystem II Complexes in Spinach Grana Thylakoid Membranes[W][OPEN] , 2014, Plant Cell.

[11]  E. Boekema,et al.  Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. , 2014, The Plant journal : for cell and molecular biology.

[12]  A. Nakano,et al.  Visualizing structural dynamics of thylakoid membranes , 2014, Scientific Reports.

[13]  A. Nakano,et al.  Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy , 2013, Scientific Reports.

[14]  Gerhard Wanner,et al.  Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by Inducing Membrane Curvature[W] , 2013, Plant Cell.

[15]  J. Beatty,et al.  Nano-mechanical mapping of the interactions between surface-bound RC-LH1-PufX core complexes and cytochrome c2 attached to an AFM probe , 2013, Photosynthesis Research.

[16]  P. Horton,et al.  Towards elucidation of dynamic structural changes of plant thylakoid architecture , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  H. Kirchhoff,et al.  Architectural switch in plant photosynthetic membranes induced by light stress , 2012, Proceedings of the National Academy of Sciences.

[18]  S. Santabarbara,et al.  Functional Analyses of the Plant Photosystem I–Light-Harvesting Complex II Supercomplex Reveal That Light-Harvesting Complex II Loosely Bound to Photosystem II Is a Very Efficient Antenna for Photosystem I in State II[W] , 2012, Plant Cell.

[19]  Matthew P. Johnson,et al.  Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. , 2012, Biophysical journal.

[20]  Z. Reich,et al.  Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. , 2012, The Plant journal : for cell and molecular biology.

[21]  E. Shimoni,et al.  Dynamic control of protein diffusion within the granal thylakoid lumen , 2011, Proceedings of the National Academy of Sciences.

[22]  G. Wuite,et al.  Jumping Mode Atomic Force Microscopy on Grana Membranes from Spinach* , 2011, The Journal of Biological Chemistry.

[23]  Matthew P. Johnson,et al.  Photoprotective Energy Dissipation Involves the Reorganization of Photosystem II Light-Harvesting Complexes in the Grana Membranes of Spinach Chloroplasts[W] , 2011, Plant Cell.

[24]  G. Oostergetel,et al.  Fine structure of granal thylakoid membrane organization using cryo electron tomography. , 2011, Biochimica et biophysica acta.

[25]  W. Gruszecki,et al.  3-D modelling of chloroplast structure under (Mg2+) magnesium ion treatment. Relationship between thylakoid membrane arrangement and stacking. , 2010, Biochimica et biophysica acta.

[26]  W. Sakamoto Faculty Opinions recommendation of Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. , 2010 .

[27]  Matthew P. Johnson,et al.  Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation , 2010 .

[28]  H. Kirchhoff,et al.  Efficient Light Harvesting by Photosystem II Requires an Optimized Protein Packing Density in Grana Thylakoids , 2010, The Journal of Biological Chemistry.

[29]  J. Rochaix,et al.  The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis , 2010, Proceedings of the National Academy of Sciences.

[30]  T. Shiina,et al.  Selective excitation of photosystems in chloroplasts inside plant leaves observed by near-infrared laser-based fluorescence spectral microscopy. , 2010, Plant & cell physiology.

[31]  D. Leister,et al.  Role of Plastid Protein Phosphatase TAP38 in LHCII Dephosphorylation and Thylakoid Electron Flow , 2010, PLoS biology.

[32]  Jun Minagawa,et al.  Live-cell imaging of photosystem II antenna dissociation during state transitions , 2009, Proceedings of the National Academy of Sciences.

[33]  Yoichiro Fukao,et al.  Efficient Operation of NAD(P)H Dehydrogenase Requires Supercomplex Formation with Photosystem I via Minor LHCI in Arabidopsis[W] , 2009, The Plant Cell Online.

[34]  T. Morosinotto,et al.  Light-induced Dissociation of an Antenna Hetero-oligomer Is Needed for Non-photochemical Quenching Induction , 2009, Journal of Biological Chemistry.

[35]  Matthew P. Johnson,et al.  Dynamics of higher plant photosystem cross-section associated with state transitions , 2009, Photosynthesis Research.

[36]  S. Styring,et al.  Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. , 2008, Biochimica et biophysica acta.

[37]  I. Ohad,et al.  Thylakoid Membrane Remodeling during State Transitions in Arabidopsis[W] , 2008, The Plant Cell Online.

[38]  T. Morosinotto,et al.  Minor Antenna Proteins CP24 and CP26 Affect the Interactions between Photosystem II Subunits and the Electron Transport Rate in Grana Membranes of Arabidopsis[W] , 2008, The Plant Cell Online.

[39]  Peter Horton,et al.  The PsbS Protein Controls the Organization of the Photosystem II Antenna in Higher Plant Thylakoid Membranes* , 2008, Journal of Biological Chemistry.

[40]  Stefan Jansson,et al.  Lack of the Light-Harvesting Complex CP24 Affects the Structure and Function of the Grana Membranes of Higher Plant Chloroplasts[OA] , 2006, The Plant Cell Online.

[41]  I. Ohad,et al.  Three-Dimensional Organization of Higher-Plant Chloroplast Thylakoid Membranes Revealed by Electron Tomographyw⃞ , 2005, The Plant Cell Online.

[42]  H. Scheller,et al.  Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. , 2005, Biochemistry.

[43]  Wah Soon Chow,et al.  Entropy-assisted stacking of thylakoid membranes. , 2005, Biochimica et biophysica acta.

[44]  J. Rochaix,et al.  State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 , 2005, Nature.

[45]  Egbert J Boekema,et al.  Supramolecular organization of thylakoid membrane proteins in green plants. , 2005, Biochimica et biophysica acta.

[46]  A. Ben-Shem,et al.  The complex architecture of oxygenic photosynthesis , 2004, Nature Reviews Molecular Cell Biology.

[47]  U. Kubitscheck,et al.  Supramolecular photosystem II organization in grana thylakoid membranes: evidence for a structured arrangement. , 2004, Biochemistry.

[48]  Graham R Fleming,et al.  Toward an understanding of the mechanism of nonphotochemical quenching in green plants. , 2004, Biochemistry.

[49]  S. Styring,et al.  Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. , 2004, Biochimica et biophysica acta.

[50]  G. Farquhar,et al.  Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. , 2003, Biochimica et biophysica acta.

[51]  A. Scherz,et al.  From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes , 2002, The EMBO journal.

[52]  R. Wise,et al.  Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity , 2002 .

[53]  P Albertsson,et al.  A quantitative model of the domain structure of the photosynthetic membrane. , 2001, Trends in plant science.

[54]  F. Wollman State transitions reveal the dynamics and flexibility of the photosynthetic apparatus , 2001, The EMBO journal.

[55]  H. Scheller,et al.  Balance of power: a view of the mechanism of photosynthetic state transitions. , 2001, Trends in plant science.

[56]  H. Scheller,et al.  Green plant photosystem I binds light-harvesting complex I on one side of the complex. , 2001, Biochemistry.

[57]  E. Boekema,et al.  Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. , 2000, Journal of molecular biology.

[58]  S. Horstmann,et al.  Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. , 2000, Biochimica et biophysica acta.

[59]  E. Boekema,et al.  Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. , 1999, Biochemistry.

[60]  H. Stefánsson,et al.  Isolation and characterization of vesicles originating from the chloroplast grana margins , 1994 .

[61]  C. Gibas,et al.  The plastoquinone diffusion coefficient in chloroplasts and its mechanistic implications , 1994 .

[62]  J. Lavergne,et al.  Plastoquinone compartmentation in chloroplasts. I. Evidence for domains with different rates of photo-reduction , 1992 .

[63]  G. Noctor,et al.  Control of the light‐harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll—protein complex , 1991, FEBS letters.

[64]  F. Wollman,et al.  Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[65]  O. Vallon,et al.  Structural organization of the thylakoid membrane: freeze-fracture and immunocytochemical analysis. , 1991, Journal of electron microscopy technique.

[66]  L. Staehelin,et al.  Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. , 1983, Archives of biochemistry and biophysics.

[67]  B. Andersson,et al.  The architecture of photosynthetic membranes: lateral and transverse organization , 1982 .

[68]  J. Barber Influence of Surface Charges on Thylakoid Structure and Function , 1982 .

[69]  K. Steinback,et al.  Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems , 1981, Nature.

[70]  P. Horton,et al.  Activation of adenosine 5′ triphosphate‐induced quenching of chlorophyll fluorescence by reduced plastoquinone , 1980 .

[71]  L. Staehelin Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro , 1976, The Journal of cell biology.

[72]  L. Packer,et al.  The role of cations in the organization of chloroplast membranes. , 1971, Archives of biochemistry and biophysics.

[73]  L. Packer,et al.  Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo. , 1970, Plant physiology.

[74]  S. Izawa,et al.  Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy. , 1966, Plant physiology.

[75]  W. Menke Structure and Chemistry of Plastids , 1962 .

[76]  S. P. Gibbs The fine structure of Euglena gracilis with special reference to the chloroplasts and pyrenoids , 1960 .

[77]  H. Ruska,et al.  Zur Frage der Chloroplastenstruktur , 1940, Naturwissenschaften.

[78]  H. Ruska,et al.  Über den Nachweis von Molekülen des Tabakmosaikvirus in den Chloroplasten viruskranker Pflanzen , 1940, Naturwissenschaften.

[79]  R. Emerson,et al.  THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS , 1932, The Journal of general physiology.

[80]  Matthew P. Johnson,et al.  The photoprotective molecular switch in the photosystem II antenna. , 2012, Biochimica et biophysica acta.

[81]  Matthew P. Johnson,et al.  Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. , 2012, The Plant journal : for cell and molecular biology.

[82]  Matthew P. Johnson,et al.  Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. , 2010, The Plant journal : for cell and molecular biology.

[83]  E. Boekema,et al.  Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the Photosystem II, Photosystem I, ATP synthase and cytochrome b6 f complexes , 2004, Photosynthesis Research.

[84]  L. Staehelin,et al.  Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes , 2004, Photosynthesis Research.

[85]  J. Barber,et al.  Experimental and theoretical considerations of mechanisms controlling cation effects on thylakoid membrane stacking and chlorophyll fluorescence. , 1981, Biochimica et biophysica acta.

[86]  D. Paolillo The three-dimensional arrangement of intergranal lamellae in chloroplasts. , 1970, Journal of cell science.