Mid-infrared supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber

In this paper, we have numerically investigated a Ge<sub>11.5</sub>As<sub>24</sub>Se<sub>64.5</sub> based chalcogenide photonic crystal fiber and simulated 1-10 μm mid-infrared supercontinuum generation. This mid-infrared broadband supercontinuum is achieved for 100 mm long photonic crystal fiber pumped with 85 femtosecond laser pulses operated at 3.1 μm and peak power pulse is 3 kW. A broad and flat dispersion profile with two zero dispersion wavelengths of Ge<sub>11.5</sub>As<sub>24</sub>Se<sub>64.5</sub> photonic crystal fiber combined with the high nonlinearity and generate ultra flat broadband supercontinuum.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  D J Richardson,et al.  2R-regenerative all-optical switch based on a highly nonlinear holey fiber. , 2001, Optics letters.

[3]  B. Malomed,et al.  Observation of asymmetric spectrum broadening induced by silver nanoparticles in a heavy-metal oxide glass , 2011, 1104.0952.

[4]  J.S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Klaus Mølmer,et al.  Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. , 2004, Optics express.

[6]  B M A Rahman,et al.  Dispersion engineered Ge₁₁.₅As₂₄ Se₆₄.₅ nanowire for supercontinuum generation: a parametric study. , 2014, Optics express.

[7]  P. Petropoulos,et al.  Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold , 2003, IEEE Photonics Technology Letters.

[8]  G. Singh,et al.  Chalcogenide (LiGaSe 2 , LiGISe, LiGaS 2 ): A Perfect Material to Design Highly Nonlinear PCFs for Supercontinuum Generation , 2016 .

[9]  Hiro-o Hamaguchi,et al.  Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy. , 2003, Optics letters.

[10]  Christian Callegari,et al.  Advances in Computing, Communications and Informatics (ICACCI) , 2015 .

[11]  O. Boyraz,et al.  10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers , 2000, Journal of Lightwave Technology.

[12]  Hideaki Kano,et al.  Coherent anti-Stokes Raman scattering microscopy using a supercontinuum generated from a photonic crystal fiber , 2006, International Conference on Coherent and Nonlinear Optics.

[13]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[14]  A. Husakou,et al.  Supercontinuum generation in aqueous colloids containing silver nanoparticles. , 2009, Optics letters.

[15]  Ju Han Lee,et al.  A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber , 2003, IEEE Photonics Technology Letters.

[16]  V. Janyani,et al.  Two-Octave Spanning Supercontinuum in a Soft Glass Photonic Crystal Fiber Suitable for 1.55 $\mu$m Pumping , 2011, Journal of Lightwave Technology.

[17]  P. Roberts,et al.  Demonstration of ultra-flattened dispersion in photonic crystal fibers. , 2002, Optics express.

[18]  J. Sharping,et al.  Soliton squeezing in microstructure fiber. , 2002, Optics letters.

[19]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[20]  Rick Trebino,et al.  Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. , 2005, Optics express.

[21]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[22]  P. Russell,et al.  Tellurite photonic crystal fiber. , 2003, Optics express.

[23]  Amruth N. Kumar,et al.  Links , 1999, INTL.

[24]  Steve Madden,et al.  Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm. , 2010, Optics express.

[25]  Heike Ebendorff-Heidepriem,et al.  Bismuth glass holey fibers with high nonlinearity. , 2004, Optics express.

[26]  John M. Dudley,et al.  Nonlinear fibre optics overview , 2010 .

[27]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[28]  Federica Poli,et al.  Photonic crystal fibers : properties and applications , 2007 .

[29]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[30]  Jasbinder S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2009 .

[31]  M. Spurny Photonic crystal waveguides in chalcogenide glasses , 2011 .

[32]  P. Andrés,et al.  Designing the properties of dispersion-flattened photonic crystal fibers. , 2001, Optics express.

[33]  P. A. Andersen,et al.  A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber , 2003, IEEE Photonics Technology Letters.

[34]  G. Agrawal,et al.  Ultrabroadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers , 2015 .

[35]  David J. Richardson,et al.  Extruded singlemode non-silica glass holey optical fibres , 2002 .

[36]  Corkum,et al.  Supercontinuum generation in gases. , 1986, Physical review letters.

[37]  H. Hamaguchi,et al.  Ultrabroadband (>2500cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber , 2005 .

[38]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[39]  Takasumi Tanabe,et al.  Broadband supercontinuum generation and Raman response in Ge11.5As24Se64.5 based chalcogenide photonic crystal fiber , 2016, 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT).

[40]  Panarit Sakunasinha,et al.  Mid-infrared supercontinuum in a Ge11:5As24Se64:5 chalcogenide waveguide , 2015, International Conference on Photonics Solutions.

[41]  Ole Bang,et al.  Supercontinuum generation in photonic crystal fibres , 2007 .

[42]  H. Haus,et al.  Raman noise and soliton squeezing , 1994 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Daniel L Marks,et al.  Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. , 2002, Optics letters.

[45]  P. Kumar,et al.  All-optical switching based on cross-phase modulation in microstructure fiber , 2002, IEEE Photonics Technology Letters.

[46]  Robert R. Alfano,et al.  The Supercontinuum Laser Source: Fundamentals with Updated References , 2006 .

[47]  J. Sharping,et al.  Amplitude squeezing in a Mach-Zehnder fiber interferometer: Numerical analysis of experiments with microstructure fiber. , 2002, Optics express.

[48]  Wu Yuan,et al.  2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber , 2013, 1308.5910.

[49]  Q. X. Li,et al.  Supercontinuum pulse generation and propagation in a liquid carbontetrachloride. , 1987, Applied optics.

[50]  R. Stolen,et al.  Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. , 1983, Optics letters.

[51]  Steve Madden,et al.  Progress in optical waveguides fabricated from chalcogenide glasses. , 2010, Optics express.

[52]  W. Yuan 2-10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber , 2013 .

[53]  B. M. A. Rahman,et al.  Ultrabroad supercontinuum generation in tellurite equiangular spiral photonic crystal fiber , 2013 .

[54]  F. Omenetto,et al.  Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. , 2002, Optics express.

[55]  B. M. A. Rahman,et al.  Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide. , 2015, Optics express.