The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum).

This paper describes the genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum), which is the model acetogenic bacterium that has been widely used for elucidating the Wood-Ljungdahl pathway of CO and CO(2) fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into 3 mol of acetate and to grow autotrophically using H(2) and CO as electron donors and CO(2) as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO(2). Acetogenic bacteria also couple the Wood-Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols and aromatic compounds) and electron acceptors (CO(2), nitrate, nitrite, thiosulfate, dimethylsulfoxide and aromatic carboxyl groups). The genome consists of a single circular 2 628 784 bp chromosome encoding 2615 open reading frames (ORFs), which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. A total of 2384 (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in orthologue clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood-Ljungdahl pathway.

[1]  L. Ljungdahl,et al.  Purification and properties of 5,10-methenyltetrahydrofolate cyclohydrolase from Clostridium formicoaceticum. , 1982, The Journal of biological chemistry.

[2]  Jizhong Zhou,et al.  Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium , 2004, Applied and Environmental Microbiology.

[3]  J. Rose,et al.  Characterization of a corrinoid protein involved in the C1 metabolism of strict anaerobic bacterium Moorella thermoacetica , 2007, Proteins.

[4]  D. M. Ivey,et al.  Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes , 1987, Journal of bacteriology.

[5]  J. Ferry Enzymology of one-carbon metabolism in methanogenic pathways. , 1999, FEMS microbiology reviews.

[6]  A. Böck,et al.  Analysis of the transcarbamoylation-dehydration reaction catalyzed by the hydrogenase maturation proteins HypF and HypE. , 2004, European journal of biochemistry.

[7]  V. Müller,et al.  Energy Conservation in Acetogenic Bacteria , 2003, Applied and Environmental Microbiology.

[8]  H. A. Barker,et al.  Carbon Dioxide Utilization in the Synthesis of Acetic Acid by Clostridium Thermoaceticum. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Jiujun Cheng,et al.  Purification and Characterization of Membrane-associated CooC Protein and Its Functional Role in the Insertion of Nickel into Carbon Monoxide Dehydrogenase from Rhodospirillum rubrum * , 2001, The Journal of Biological Chemistry.

[10]  J. Marmur [100] A procedure for the isolation of deoxyribonucleic acid from microorganisms , 1963 .

[11]  M. P. Bryant,et al.  Acetogenesis and the Rumen: Syntrophic Relationships , 1994 .

[12]  S. Spring,et al.  Molecular Characterization of a Dechlorinating Community Resulting from In Situ Biostimulation in a Trichloroethene-Contaminated Deep, Fractured Basalt Aquifer and Comparison to a Derivative Laboratory Culture , 2004, Applied and Environmental Microbiology.

[13]  A. Neumann,et al.  Phenyl methyl ethers: novel electron donors for respiratory growth of Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S , 2004, Archives of Microbiology.

[14]  J. Leadbetter,et al.  Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. , 2003, Microbiology.

[15]  L. Ljungdahl,et al.  Formate dehydrogenase, a selenium--tungsten enzyme from Clostridium thermoaceticum. , 1978, Methods in enzymology.

[16]  L. Ljungdahl,et al.  Fermentation of Glucose, Fructose, and Xylose by Clostridium thermoaceticum: Effect of Metals on Growth Yield, Enzymes, and the Synthesis of Acetate from CO2 , 1973, Journal of bacteriology.

[17]  K. T. Wieringa,et al.  Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden , 1936, Antonie van Leeuwenhoek.

[18]  H. Drake,et al.  Ecological consequences of the phylogenetic and physiological diversities of acetogens , 2002, Antonie van Leeuwenhoek.

[19]  W. O'Brien,et al.  Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum. , 1974, The Journal of biological chemistry.

[20]  K. T. Wieringa,et al.  The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria , 1939, Antonie van Leeuwenhoek.

[21]  M. Friedrich,et al.  Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate , 2002, Archives of Microbiology.

[22]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[23]  H. Drake,et al.  Glycolate as a metabolic substrate for the acetogen Moorella thermoacetica , 1999 .

[24]  V. Méjean,et al.  Signal peptide protection by specific chaperone. , 2006, Biochemical and biophysical research communications.

[25]  L. Ljungdahl,et al.  Formate Dehydrogenase of Clostridium thermoaceticum: Incorporation of Selenium-75, and the Effects of Selenite, Molybdate, and Tungstate on the Enzyme , 1973, Journal of bacteriology.

[26]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .

[27]  L. Ljungdahl The autotrophic pathway of acetate synthesis in acetogenic bacteria. , 1986, Annual review of microbiology.

[28]  J Aguilar,et al.  glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein , 1996, Journal of bacteriology.

[29]  H. Drake,et al.  Nitrate-Dependent Regulation of Acetate Biosynthesis and Nitrate Respiration by Clostridium thermoaceticum , 1999 .

[30]  H. Wood Fermentation of 3, 4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. , 1952, The Journal of biological chemistry.

[31]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[32]  Jian Wang,et al.  A complete sequence of the T. tengcongensis genome. , 2002, Genome research.

[33]  F. Rainey,et al.  Culturable Populations of Sporomusa spp. and Desulfovibrio spp. in the Anoxic Bulk Soil of Flooded Rice Microcosms , 1999, Applied and Environmental Microbiology.

[34]  J. Zeikus,et al.  Growth ofClostridium thermoaceticum on H2/CO2 or CO as energy source , 2005, Current Microbiology.

[35]  Inna Dubchak,et al.  The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..

[36]  A. Spormann,et al.  Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans , 1988, Archives of Microbiology.

[37]  L. Ljungdahl,et al.  Tungsten, a component of active formate dehydrogenase from Clostridium thermoaceticum , 1975, FEBS letters.

[38]  Luke E. Ulrich,et al.  Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901 , 2005, PLoS genetics.

[39]  A. Brune,et al.  Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts , 2007, The ISME Journal.

[40]  J. Breznak,et al.  Volatile Fatty Acid Production by the Hindgut Microbiota of Xylophagous Termites , 1983, Applied and environmental microbiology.

[41]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[42]  H. Drake,et al.  Nitrite as an Energy-Conserving Electron Sink for the Acetogenic Bacterium Moorella thermoacetica , 2003, Current Microbiology.

[43]  L. Ljungdahl,et al.  Role of corrinoids in the total synthesis of acetate from CO-2 by Clostridium thermoaceticum. , 1966, Federation proceedings.

[44]  Xiaoli Feng,et al.  An analysis of the proteomic profile for Thermoanaerobacter tengcongensis under optimal culture conditions , 2004, Proteomics.

[45]  H. Drake,et al.  Oxalate- and Glyoxylate-Dependent Growth and Acetogenesis by Clostridium thermoaceticum , 1993, Applied and environmental microbiology.

[46]  M. Nei,et al.  Molecular Evolution and Phylogenetics , 2000 .

[47]  B. Schink Energetics of syntrophic cooperation in methanogenic degradation , 1997, Microbiology and molecular biology reviews : MMBR.

[48]  J. Badia,et al.  The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. , 2001, Microbiology.

[49]  J. Hugenholtz,et al.  Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum , 1989, Journal of bacteriology.

[50]  Dmitrij Frishman,et al.  Deciphering the evolution and metabolism of an anammox bacterium from a community genome , 2006, Nature.

[51]  J. Suflita,et al.  H2-CO2-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium , 1993, Applied and environmental microbiology.

[52]  L. Ljungdahl,et al.  Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase , 2004, Archives of Microbiology.

[53]  J. Rabinowitz,et al.  Studies on the mechanism of formyltetrahydrofolate synthetase. The Peptococcus aerogenes enzyme. , 1978, The Journal of biological chemistry.

[54]  M. Quail,et al.  A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. , 1997, Microbiology.

[55]  L. Ljungdahl,et al.  Purification and properties of acetate kinase from Clostridium thermoaceticum , 2004, Archives of Microbiology.

[56]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[57]  S. Braus-Stromeyer,et al.  Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? , 1997, BioFactors.

[58]  R. Hedderich,et al.  Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. , 1999, European journal of biochemistry.

[59]  J. Ferry,et al.  Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila , 1996, Journal of bacteriology.

[60]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[61]  G. Bennett,et al.  Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824 , 1996, Applied and environmental microbiology.

[62]  Wood Hg Fermentation of 3, 4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. , 1952 .

[63]  D. Shelver,et al.  Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum , 1996, Journal of bacteriology.

[64]  M. Nei,et al.  The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  G. Fuchs,et al.  Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum , 1988, Archives of Microbiology.

[66]  Yanhe Ma,et al.  Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. , 2001, International journal of systematic and evolutionary microbiology.

[67]  F. Mȕller Chemistry and Biochemistry of Flavoenzymes: Volume I , 1991 .

[68]  H. Drake Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum , 1982, Journal of bacteriology.

[69]  L. Ljungdahl,et al.  Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum , 1997, Journal of bacteriology.

[70]  P. Lawson,et al.  The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. , 1994, International journal of systematic bacteriology.

[71]  D. Zamble,et al.  The metal- and DNA-binding activities of Helicobacter pylori NikR. , 2006, Journal of inorganic biochemistry.

[72]  G. Ritter,et al.  A New Type of Glucose Fermentation by Clostridium thermoaceticum , 1942, Journal of bacteriology.

[73]  S. Ragsdale,et al.  Hydrogenase from Acetobacterium woodii , 1984, Archives of Microbiology.

[74]  A. Böck,et al.  Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli , 1991, Molecular microbiology.

[75]  G. Gottschalk,et al.  Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii , 1989, Journal of bacteriology.

[76]  Philip Hinchliffe,et al.  Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus , 2006, Science.

[77]  H. Schindelin,et al.  A structural comparison of molybdenum cofactor-containing enzymes. , 1998, FEMS microbiology reviews.

[78]  C. Staben,et al.  Nucleotide sequence of the Saccharomyces cerevisiae ADE3 gene encoding C1-tetrahydrofolate synthase. , 1986, The Journal of biological chemistry.

[79]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[80]  D. Richardson,et al.  Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  H. Drake,et al.  Influence of nitrate on oxalate- and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica , 2002, Archives of Microbiology.

[82]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[83]  H. Drake Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives , 1994 .

[84]  J. Zeikus,et al.  Growth of Clostridium thermoaceticum on H2/CO 2 as Energy Source , 1983 .

[85]  G. Schwarz Molybdenum cofactor biosynthesis and deficiency , 2005, Cellular and Molecular Life Sciences CMLS.

[86]  H. Drake,et al.  Old Acetogens, New Light , 2008, Annals of the New York Academy of Sciences.

[87]  R. Hedderich Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I , 2004, Journal of bioenergetics and biomembranes.

[88]  S. Ragsdale,et al.  Characterization of a Three-Component Vanillate O-Demethylase from Moorella thermoacetica , 2001, Journal of bacteriology.

[89]  L. Ljungdahl,et al.  Presence of Cytochrome and Menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum , 1975, Journal of bacteriology.

[90]  N. Adrian,et al.  Anaerobic Biodegradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum Strain HAAP-1 Isolated from a Methanogenic Mixed Culture , 2004, Current Microbiology.

[91]  D. Grahame,et al.  Nickel in subunit beta of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens. Catalytic properties and evidence for a binuclear Ni-Ni site. , 2003, The Journal of biological chemistry.

[92]  J. Leadbetter,et al.  Acetogenesis from H2 plus CO2 by spirochetes from termite guts. , 1999, Science.

[93]  L. Young,et al.  Anaerobic Transformation of Alkanes to Fatty Acids by a Sulfate-Reducing Bacterium, Strain Hxd3 , 2003, Applied and Environmental Microbiology.

[94]  R. Thauer,et al.  H2: heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum. Composition and properties. , 1994, European journal of biochemistry.

[95]  A. Bernalier-Donadille,et al.  H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. , 2006, FEMS microbiology letters.

[96]  J. Ralph,et al.  Assessment of Reductive Acetogenesis with Indigenous Ruminal Bacterium Populations and Acetitomaculum ruminis , 1998, Applied and Environmental Microbiology.

[97]  A. Brune,et al.  Localization and In Situ Activities of Homoacetogenic Bacteria in the Highly Compartmentalized Hindgut of Soil-Feeding Higher Termites (Cubitermes spp.) , 1999, Applied and Environmental Microbiology.

[98]  H. Drake,et al.  Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum , 1996, Journal of bacteriology.

[99]  Sierd Bron,et al.  Two minimal Tat translocases in Bacillus , 2004, Molecular microbiology.

[100]  Søren Brunak,et al.  Prediction of twin-arginine signal peptides , 2005, BMC Bioinformatics.

[101]  L. Ljungdahl,et al.  Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. , 1984, The Journal of biological chemistry.

[102]  L. Ljungdahl,et al.  Properties of Nicotinamide Adenine Dinucleotide Phosphate-Dependent Formate Dehydrogenase from Clostridium thermoaceticum , 1966, Journal of bacteriology.

[103]  R. Thauer,et al.  Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium , 1983, FEBS letters.

[104]  Nicole A. Leal,et al.  PduL Is an Evolutionarily Distinct Phosphotransacylase Involved in B12-Dependent 1,2-Propanediol Degradation by Salmonella enterica Serovar Typhimurium LT2 , 2006, Journal of bacteriology.

[105]  J. Leedle,et al.  Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen , 2004, Archives of Microbiology.

[106]  H. Wood,et al.  Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. , 1981, The Journal of biological chemistry.

[107]  E. Stupperich,et al.  Corrinoids in anaerobic bacteria , 1990 .

[108]  H. Drake,et al.  Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum , 1993, Journal of bacteriology.

[109]  Patrick Chain,et al.  Finishing Repetitive Regions Automatically with Dupfinisher , 2006, BIOCOMP.

[110]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[111]  J. García,et al.  Anaerobic bacteria from hypersaline environments. , 1994, Microbiological reviews.

[112]  R. Himes,et al.  Formyltetrahydrofolate synthetase. Effect of pH and temperature on the reaction. , 1968, Archives of biochemistry and biophysics.

[113]  H. Sakuraba,et al.  A novel hyperthermophilic archaeal glyoxylate reductase from Thermococcus litoralis. Characterization, gene cloning, nucleotide sequence and expression in Escherichia coli. , 2001, European Journal of Biochemistry.

[114]  S. Ragsdale,et al.  The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won , 1997, BioFactors.

[115]  Ralph S. Wolfe,et al.  Acetobacterium, a New Genus of Hydrogen-Oxidizing, Carbon Dioxide-Reducing, Anaerobic Bacteria , 1977 .

[116]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[117]  J C Rabinowitz,et al.  Isolation and characterization of the Saccharomyces cerevisiae MIS1 gene encoding mitochondrial C1-tetrahydrofolate synthase. , 1988, The Journal of biological chemistry.

[118]  Katherine H. Kang,et al.  Genome Sequence of the PCE-Dechlorinating Bacterium Dehalococcoides ethenogenes , 2005, Science.

[119]  James R. Cole,et al.  The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data , 2006, Nucleic Acids Res..

[120]  W. Whitman,et al.  Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[121]  S. Ragsdale,et al.  Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Karen A. Fahrner,et al.  CheZ Has No Effect on Flagellar Motors Activated by CheY13DK106YW , 1998, Journal of bacteriology.

[123]  L. Ljungdahl,et al.  Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium , 1981, Archives of Microbiology.

[124]  M. Inui,et al.  Complete Genome Sequence of the Dehalorespiring Bacterium Desulfitobacterium hafniense Y51 and Comparison withDehalococcoides ethenogenes 195 , 2006, Journal of bacteriology.

[125]  T. Lien,et al.  Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences , 1999, Extremophiles.

[126]  L. Ljungdahl,et al.  The Acetyl-CoA Pathway and the Chemiosmotic Generation of ATP during Acetogenesis , 1994 .

[127]  L. Ljungdahl,et al.  Total Synthesis of Acetate from CO2 II. Purification and Properties of Formyltetrahydrofolate Synthetase from Clostridium thermoaceticum , 1969, Journal of bacteriology.

[128]  S. K. Mitra Hepatic vascular changes in human and experimental cirrhosis. , 1966, The Journal of pathology and bacteriology.

[129]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[130]  L. Ljungdahl,et al.  Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. , 1990, Biochemistry.

[131]  V. Méjean,et al.  Electron Transfer and Binding of the c-Type Cytochrome TorC to the Trimethylamine N-Oxide Reductase in Escherichia coli * , 2001, The Journal of Biological Chemistry.

[132]  R. Hedderich,et al.  Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. , 2002, European journal of biochemistry.

[133]  J. Kreft,et al.  Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds , 2004, Archives of Microbiology.

[134]  R. Macnab Type III flagellar protein export and flagellar assembly , 2004 .

[135]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[136]  H. Harmsen,et al.  Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. , 1998, International journal of systematic bacteriology.

[137]  M. Nei,et al.  Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. , 2000, Molecular biology and evolution.

[138]  S. Ragsdale,et al.  The roles of coenzyme A in the pyruvate:ferredoxin oxidoreductase reaction mechanism: rate enhancement of electron transfer from a radical intermediate to an iron-sulfur cluster. , 2002, Biochemistry.

[139]  H. Drake,et al.  Development of a minimally defined medium for the acetogen Clostridium thermoaceticum , 1984, Journal of bacteriology.

[140]  J. Brewer,et al.  Chemical, physical and enzymatic comparisons of formyltetrahydrofolate synthetases from thermo- and mesophilic Clostridia. , 1976, Experientia. Supplementum.

[141]  G. Gottschalk,et al.  Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide , 2004, Archives of Microbiology.

[142]  U. Deppenmeier The Membrane-Bound Electron Transport System of Methanosarcina Species , 2004, Journal of bioenergetics and biomembranes.

[143]  L. Ljungdahl,et al.  Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. , 1983, The Journal of biological chemistry.

[144]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes , 2005, Nucleic Acids Res..

[145]  J. Breznak Acetogenesis from Carbon Dioxide in Termite Guts , 1994 .

[146]  E. Stackebrandt,et al.  Thermicanus aegyptius gen. nov., sp. nov., Isolated from Oxic Soil, a Fermentative Microaerophile That Grows Commensally with the Thermophilic Acetogen Moorella thermoacetica , 1999, Applied and Environmental Microbiology.

[147]  R. Conrad,et al.  Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils , 1995, Applied and environmental microbiology.

[148]  H. Drake,et al.  Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest , 1999 .